Jun 21 – 25, 2021
Clarion Congress Hotel Prague
Europe/Prague timezone
Proceedings of the ANIMMA 2021 conference are now available online in open access: https://www.epj-conferences.org/animma-2021

#11-111 Neutron-Gamma Discrimination of Stilbene Crystal, 6Li-doped Plastic and BC501A Liquid Scintillators-based Machine Learning and Signal Processing Techniques

Jun 23, 2021, 4:50 PM
5m
MERIDIAN (Clarion Congress Hotel Prague)

MERIDIAN

Clarion Congress Hotel Prague

Poster 11 Current Trends in Development of Radiation Detectors 11 Current Trends in Development of Radiation Detectors

Speaker

CARREL, Frédérick (Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France)

Description

This paper presents a comparative study of neutron-gamma discrimination performance with stilbene crystal, 6Li-doped plastic and BC501A liquid scintillators coupled to photomultiplier tubes. Neutron-gamma discrimination itself relies upon supervised and unsupervised machine learning algorithms. The method, which is based on blind non-negative matrix factorization (NMF) as an unsupervised model-based source separation and support vector Machines (SVM) as a supervised learning model, aims to achieve separation of neutron and gamma-ray pulses generated from scintillation detectors with high specificity, and high sensitivity as well. The NMF is used for blind source separation when there is no prior information about the mixing process and source signals. It is applied to reconstruct a set of statistically independent original sources from a mixture of output signals induced from radioactive decay of Cf-252 source. A factor of merit, namely the signal-to-interference ratio, is used to validate the separation and reconstruction quality of original sources. The reconstructed independent sources are then characterized by applying a continuous wavelet transform that converts the one-dimensional into two-dimensional time-scale representation (or scalogram). The latter is a complete analysis of the time and scale of the one-dimensional time series signal and allows to identify the characteristics of the reconstructed original sources more accurately. We then use these scalograms to construct and train a binary classification SVM model devoted to the quantitative recognition of neutrons and gamma-rays in a mixed radiation filed. Before using SVM, the Otsu thresholding method and a principal components analysis are implemented to increase the prediction ability of the SVM model. The performance evaluation of the proposed method using stilbene crystal, 6Li-doped plastic and BC501A liquid scintillators is performed by comparing it with a conventional pulse shape discrimination method, namely the charge comparison method (CCM) that is used to obtain the pure training data set for SVM model. Finally, the SVM model based on NMF and CCM is assessed using proper performance metrics, namely the confusion matrix and precision-recall.

Primary authors

CARREL, Frédérick (Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France) ARAHMANE, Hanan (Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France)

Co-authors

Dr FRANGVILLE, Camille (Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France) Dr HAMEL, Matthieu (Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France) Prof. BEN MAISSA, Yann (Laboratory of Telecommunications, Networks and Service Systems, National Institute of Posts and Telecommunications, Allal El Fassi Avenue, Rabat, Morocco) Dr HAMZAOUI, El-Mehdi (National Centre for Nuclear Energy, Science and Technology (CNESTEN)) Dr DUMAZERT, Jonathan (Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France) Dr LYNDE, Clément (Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France) Dr BERTRAND, Guillaume H.V. (Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France) Prof. CHERKAOUI EL MOURSLI, Rajaa (Equipe des Sciences de la Matière et du Rayonnement (ESMaR), Faculty of Sciences, Mohammed V University in Rabat)

Presentation materials