MEDEX'25

Contribution ID: 14 Type: Oral presentation

Launch and operation of the PIKACHU experiment to search for double beta decay in 160Gd

Wednesday, June 25, 2025 2:45 PM (30 minutes)

Gadolinium-160 (160 Gd) is a candidate for double beta decay with relatively high natural abundance (21.9%). However, its low Q-value (1.73 MeV) makes the observation of even the two-neutrino double beta decay ($^{2\nu2\beta}$) extremely challenging. Previous experiments using a 2-inch Gd₂SiO₅ (GSO) scintillator couldn't detect $^{2\nu2\beta}$ due to significant background from intrinsic uranium and thorium series in GSO. As a result, the search established a lower limit of $^{1.9}\times10^{19}$ years on the $^{2\nu2\beta}$ half-life. Meanwhile, a theoretical prediction suggests a $^{2\nu2\beta}$ half-life of approximately $^{7.4}\times10^{20}$ years.

The PIKACHU experiment is designed to overcome the limitations by employing large $Gd_2Ga_3Al_2O_{12}$ (GAGG) single crystals and to observe $2\nu2\beta$. GAGG offers several advantages over GSO: higher light yield, possibility of pulse shape discrimination, and a higher ^{160}Gd content by increasing in size. We planned two phases: Phase 1 aims to update the current lower limit on the $2\nu2\beta$ half-life, and Phase 2 is intended to achieve a sensitivity approximately an order of magnitude better than previous study, with the goal of observing the decay.

In this presentation, I will introduce the PIKACHU experiment, present on the development of high-purity GAGG crystals, and report the current status of data acquisition and analysis for Phase 1.

Primary author: OMORI, Takumi (University of Tsukuba)

Presenter: OMORI, Takumi (University of Tsukuba)

Session Classification: Experiment

Track Classification: Experiment