Restructuring AutoBub C++ code
into Python (pyAutoBub)

Babar Ali

PICO Collaboration Meeting
Prague August 2024

AutoBub

AutoBub was originally developed by Pitam Mitra (University of Alberta).
Many people have made contributions to the code and/or serve to maintain it.
Over the years a lot of changes were made.

A lot of exceptions were introduced to run the code for specific cameras, runs and
chambers.

AutoBub running modes

— Detect mode —m 4 Dump buble info

Column based data file

horiPixFrame0 vertPixFrameO
htemp 45 htemp

60/— Entries 460 - Entries 460

- Mean 1236 4 - Mean 599.9

C StdDev 518.4 oy StdDev 207.8
50— 35—

— 30—
40— -

~ 25—
30— -

- 20—
20— 15— ’H

: 10:— [“ | ‘ | |
10— T . .f { ‘ .11 nlk

u T el Y11 “l‘ “1“ IIH[“‘ | J ‘HJ‘ [[l : 1N | l U B T LA I

0 1 I L I"I L 1 L l“f‘l 1 ” 1 1 1 I 1 I[I N L1 1 I 1 1 1 I L1 1 I L1 0— 1l I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000

horiPixFrame0 vertPixFrame0

The location, in pixel space, where the bubble is found in the frameO frame of the image

® Restructure C++ code into python.

® Code must be user friendly, robust and scalable

® |t will be implemented using object oriented programming (OOP).
® Compare the output results.

® |ntegrate the code into the analysis processing chain.

® Sub-project of PICOCode.

pyAutoBub development

® Code will be divided into separate, interchangeable modules or components.

® Each module will handle a specific aspect of the functionality and can be developed, tested,
and maintained independently.

® This approach ensures improved organization, reusability, ease of maintenance, and scalability.

O

configuration file
Image location “
Run number
Camera

Custom mask
Event number

autoBub txt/img
output

28 Base @class

—) Core class that will «— > '

Image Data Model Average Sigma image handles all aspects of the package
image

Separate methods to
@ OpenCVObjects @class control the flow of each

module
OpenCV entro Ca;:u::iance rlose
methods for Py/sig subtraction
object detection \

and tracklng

1111l Bubble detection @class

Find bubble Bubbles in
single vs multi- different region
bubble of chamber

Py

AutoBub structure

« PYAUTOBUB EO &

v config Config file

config > ! config.yaml

20240131

. 2 imageFormat: png
b v docs
Documentatlon 3 inputFileFormat: zip
usage.rst 4 frameOffset: 30
USQfUI SCI‘iptS €&——— V scripts 5 eventNumber: 10
@ autoBubTxt2Root.py 6 camMask_dir: /path/to/cam_masks
o 7 data_dir: /path/to/data
o 8 out_dir: /path/to/output
A" d @ __init__.py -
source coade @ base_processor.py
@ io_handler.py @ run_autobub.py
1 from src import BaseProcessor as Base
v tests 2 from utils import getlog
TeStS fOI" source COde > test_base_processor_py 3
) 4 logger = getLog(__name__)
@ test_io_handler.py ‘
H v utils 6 def execute():
Helper functions €—— e :
@ __Init__.py 8 logger.info("Starting the pyAutoBub..... ")
% logging.py 9
. 10 processor = Base('config.yaml')
¢ .gitignore 11 processor.process()
() README.md Main_file_ 12
13 if __name__ == "__main__":
@ run_autobub.py > L execute()

@ setup.py
A README.md

pyAutoBub package

This is pyAutoBub.

pyAutoBub builds upon a legacy C++ implementation. The goal was to translate the existing C++ code into Python, enhancing its
performance and robustness in the process. pyAutoBub is written from scratch and aims to identify bubbles in images from a
bubble chamber and return information about the bubble candidates, including position and movement information.

Acknowledgments
We acknowledge the work done in the original C++ implementation by Pitam Mitra (University of Alberta, PhD'18).
Some useful documentation from Pitam's work:

« Pitam's PhD Thesis: https://www.snolab.ca/pico-docdb/cgi/ShowDocument?docid=3252
* AutoBub Algorithm: https://www.snolab.ca/pico-docdb/cgi/ShowDocument?docid=2031
« AutoBub Image Analysis: https://www.snolab.ca/pico-docdb/cgi/ShowDocument?docid=1578

TO-DO list

® Set up the project structure

® Read the config file data

® Implement the training module

® Option to run on a single event, all events or a couple of events

® Code to read the camera masks

® Implement image processing, bubble detection, and other modules
® |ntegrate the OpenCV module

® Option to run the code for bulk events or wall events

® Unit tests for individual modules

® Implement error handling

® Optimize the performance of critical modules, heavily relying on NumPy and pandas
® Option to run 3D reconstruction

® |ncorporate code for multi-bubble detection (Minya’s code)

® Set up Cl pipelines for automated testing

® Set up the Docker image

® Document the code with Sphinx (using the NumPy coding style guide)

Questions?

