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AutoBub

AutoBub was originally developed by Pitam Mitra (University of Alberta).
Many people have made contributions to the code and/or serve to maintain it.
Over the years a lot of changes were made.

A lot of exceptions were introduced to run the code for specific cameras, runs and
chambers.
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® Restructure C++ code into python.

® Code must be user friendly, robust and scalable

® |t will be implemented using object oriented programming (OOP).
® Compare the output results.

® |ntegrate the code into the analysis processing chain.

® Sub-project of PICOCode.



pyAutoBub development

® Code will be divided into separate, interchangeable modules or components.

® Each module will handle a specific aspect of the functionality and can be developed, tested,
and maintained independently.

® This approach ensures improved organization, reusability, ease of maintenance, and scalability.

O

configuration file
Image location “
Run number
Camera

Custom mask
Event number

autoBub txt/img
output

28 Base @class

—) Core class that will «— > '

Image Data  Model Average Sigma image handles all aspects of the package
image

Separate methods to
@ OpenCVObjects @class control the flow of each

module
OpenCV entro Ca;:u::iance rlose
methods for Py/sig subtraction
object detection \

and tracklng

1111l Bubble detection @class

Find bubble Bubbles in
single vs multi- different region
bubble of chamber




Py

AutoBub structure

« PYAUTOBUB EO &

v config Config file

config > ! config.yaml
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. 2 imageFormat: png
b v docs
Documentatlon 3 inputFileFormat: zip
usage.rst 4 frameOffset: 30
USQfUI SCI‘iptS €&——— V scripts 5 eventNumber: 10
@ autoBubTxt2Root.py 6 camMask_dir: /path/to/cam_masks
o 7 data_dir: /path/to/data
o 8 out_dir: /path/to/output
A" d @ __init__.py -
source coade @ base_processor.py
@ io_handler.py @ run_autobub.py
1 from src import BaseProcessor as Base
v tests 2 from utils import getlog
TeStS fOI" source COde > test_base_processor_py 3
) 4 logger = getLog(__name__)
@ test_io_handler.py ‘
H v utils 6 def execute():
Helper functions €—— e :
@ __Init__.py 8 logger.info("Starting the pyAutoBub..... ")
% logging.py 9
. 10 processor = Base('config.yaml')
¢ .gitignore 11 processor.process()
() README.md Main_file_ 12
13 if __name__ == "__main__":
@ run_autobub.py > L execute()

@ setup.py
A README.md

pyAutoBub package

This is pyAutoBub.

pyAutoBub builds upon a legacy C++ implementation. The goal was to translate the existing C++ code into Python, enhancing its
performance and robustness in the process. pyAutoBub is written from scratch and aims to identify bubbles in images from a
bubble chamber and return information about the bubble candidates, including position and movement information.
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Some useful documentation from Pitam's work:

« Pitam's PhD Thesis: https://www.snolab.ca/pico-docdb/cgi/ShowDocument?docid=3252
* AutoBub Algorithm: https://www.snolab.ca/pico-docdb/cgi/ShowDocument?docid=2031
« AutoBub Image Analysis: https://www.snolab.ca/pico-docdb/cgi/ShowDocument?docid=1578



TO-DO list

® Set up the project structure

® Read the config file data

® Implement the training module

® Option to run on a single event, all events or a couple of events

® Code to read the camera masks

® Implement image processing, bubble detection, and other modules
® |ntegrate the OpenCV module

® Option to run the code for bulk events or wall events

® Unit tests for individual modules

® Implement error handling

® Optimize the performance of critical modules, heavily relying on NumPy and pandas
® Option to run 3D reconstruction

® |ncorporate code for multi-bubble detection (Minya’s code)

® Set up Cl pipelines for automated testing

® Set up the Docker image

® Document the code with Sphinx (using the NumPy coding style guide)



Questions?



