

PICO

CM Prague August 2024

Alpha Spectroscopy

Emily Adams <a>16ela1@queensu.ca

Agenda

- Position corrections for AP (alpha focus)
- Piezo, band selection resolution
- Alpha pair tagging
- Alpha pair tracking
- Gaussian fits for thorium decay chain analysis

AP plot generated from current recon file

Piezo energy distribution corrected using neutron recoil data

PICO

Linear AP scale

Features

- Nice ROI resolution
- No alpha peak separation

Alpha position corrections: $R^2 \phi Z P$

 Plot a histogram of corrected energy for each piezo, each band

PICO

- Plot a histogram of corrected energy for each piezo, each band
- Some bands cleaner than others

Selecting p, b by eye

Piezo	Bands used	
0	3, 4, 5	
1	3, 4, 5	
2	3, 4, 5	
4	3, 4, 5, 6	
5	4	
6	-	
7	3, 4, 5, 6	
9	-	
10	-	
11	3, 4, 5, 6	

Selecting p, b with resolution metric

$$Rs = 1.18 * \left(\frac{(\mu_2 - \mu_1)}{(FWHM2 + FWHM1)}\right)$$

Select best resolutions for AP mean

Histogram of each resolution per piezo, per band

Log(AP) plot

PICO

Position corrections with alpha data

- Less resolution in ROI
- Improved resolution in alpha regime

Alpha timing

- Pico

Data $t_2 - t_1$

Fit $y = a * \exp(b(-x) - d) + c$

Pair separation

PICO

- Identify pairs of alpha events with time separation of 10 min or less
- Constraint that the events are consecutive

Peak purity

	Name	Value	Hesse	e Error	
0	a1	105	>	14	
1	a2	9	<	10	
2	mu1	0.824		0.010	
3	sig1	0.055		0.007	
4	mu2	0.927	0.008		
5	sig2	0.040	0.006		
6	a3	32	>	11	
7	a4	78	>	13	

- No ^{218}Po present in ^{222}Rn peak (counts=0 within error)
- Some leakage of ^{222}Rn into the ^{218}Po peak

Sum under peaks

2d histogram: $\Delta s v s \Delta t$

KS test: are the distributions the same? \rightarrow Yes

Random pairs

Alpha peak1, peak 2 pairs

PICO

Pair tracking, binomial probability

Sigma vs Alpha energy for U chain

PICO

Propagate to approximate Th chain sigmas

Same process to find Th chain mean AP

 $\chi^2/ndof = 0.4$ $\chi^2/ndof = 0.5$ 1.6 1.6 1.5 -1.5 -1.4 1.4 -1.3 · 1.3 -1.2 · 1.2 Log(AP) 1.1 -1.11.0 1.0 -0.9 -0.9 -0.8 0.8 -5500 6000 6500 7000 7500 6500 7000 7500 5500 6000 Alpha energy [keV]

Propagate this line to get mean AP for Th PICO

Error agrees with exponential fit

6 gaussian fit

6 gaussian fit amplitudes

PICO

Error not included (want to be sure before concluding we are free of thorium)

222Rn	218Po	220Rn	216Po	214Po	212Po
8.103	4.632	0.106	0.022	5.089	0.029

Thank You!

Questions, Comments?