
GitHub Projects and
Analysis Code Structure

Derek Cranshaw

PICO Collaboration Meeting

SNOLAB

August 22, 2024



A Vision for Github Projects

2

• Single landing point where ongoing software and analysis efforts can be seen at 
a glance.

• New members can see what’s being done and who’s doing what, so they know where to 
reach out for questions.

• Brief description of analysis or software ideas with no personnel assigned.

• Attached to Github, where the code for all analyses should be kept.
• Any tasks associated to a repository issue is synced between the project and the issue 

tracker.

• Priority broadly reflects how soon the output of an analysis affects operational decisions.



3

Where to find it

https://github.com/orgs/picoexperime
nt/projects/2

https://github.com/orgs/picoexperiment/projects/2
https://github.com/orgs/picoexperiment/projects/2


4

Where to find it

https://github.com/orgs/picoexperime
nt/projects/2

https://github.com/orgs/picoexperiment/projects/2
https://github.com/orgs/picoexperiment/projects/2


5

Where to find it

https://github.com/orgs/picoexperime
nt/projects/2

https://github.com/orgs/picoexperiment/projects/2
https://github.com/orgs/picoexperiment/projects/2


6

Views – By repository

Views

Sorted by 
Repo



7

Views – By repository

Views

Sorted by 
Repo

• Every task must be associated with a GitHub repository
• Use the Analysis repository unless the task is associated to some other repository

(e.g. Autobub improvements are associated to the Autobub3hs repository).



8

Views – Team capacity

• Easily find tasks with unassigned personnel, opportunities for new members.
• When someone leaves the collaboration, shows which tasks need to be 

picked up.



9

An Example



10

An Example



11

An Example

• Timeline of progress, and jump-off point for documentation.



Keeping up to Date

12

• The more people use the system, the more useful the system will be, which will 
encourage more use.

• Don’t want to make this a burden or time-sink, but it should be just a few extra minutes of 
work each week.

• Can be as simple as a sentence or two describing a progress update, or a link to some 
slides on DocDB (or both).

• Not a place for long, detailed write-ups, but a great place to link to them. 

• Once a task is complete, final comment can link to a thesis, paper, or some other 
write-up, then marked as closed.

• The project should be up to date as of this week. Please check that your 
assignments reflect reality, and for the tasks you’re working on, see if I’ve missed 
anything.



13

Processing and Analysis Code

PICOCode:
• Responsible for coordinating the analysis chain.
• Calls the relevant optics submodules (autobub, etc.).
• Processes the non-optics instrumentation data.
• The thing that runs on the raw data to produce recon files like the 

merged_all.txt file.
• Analysis-specific codes that aren’t required for processing don’t really belong 

here. They should go in the analysis repository (a.k.a. UserCode)

PICOcode

Analysis

Git submodule of PICOcode

(often called “UserCode” when checked out

according to the readme instructions).



• This is … quite un-gitlike. But it’s the model we’ve been using without 
confusion, so probably it’s fine for us.

Analysis Repository Structure

14

!

!



Code Quality

15

• Want to encourage code sharing – commit early, commit often.
• Requiring beautiful code discourages committing and makes sharing more difficult.

• But… messy, undocumented code is much harder to use (though often better 
than nothing).

• Proposal…



The Model

16

• Your user directory is yours to version and store all your analysis code, in 
whatever state it’s in.

• It needn’t be fully complete or documented – can be useful to point others to just to show 
how to do some simple analysis task (like instantiate a ReconFile or Event object, etc.)

• We trust each other not to push over top of each other's directories.

• The pico directory is to store well-documented, structured pieces of code which 
produce some specific result (like produce plots, compute rates, etc.).

• Should follow “PICO golden rules” (Colin is currently adapting these COUPP golden rules).

• Allows anyone in the collaboration to reproduce plots or results.

• Ideally, any plots or results shown in papers or at conferences, and important plots in 
theses, should have some code that allows it to be reproduced. 

• This also ensures we’re all showing the same thing at conferences etc.



Adding to pico

17

• pico is currently empty.
• Will add a copy of the PICO golden rules once they’re ready.

• Will add a simple calculation which will also serve as an example for how the code could 
be structured.

• Ideally, would be nice to have code reviewed before going into pico by using a PR 
from a separate branch, as is currently being done for PICOcode.

• Is this overkill? I like the idea but what do the other analysers thing?

• Can’t enforce this via branch protection rules, can just trust each other to do this.

• Review can be quasi-enforceable for individual folders (via git pre-commit hooks, ask me if 
you’re interested). Very easy to spin up, but this might be overkill as well.

• The goal is that this will make everyone’s lives a little easier - Let’s try this.


	Default Section
	Slide 1: GitHub Projects and Analysis Code Structure
	Slide 2: A Vision for Github Projects
	Slide 3: Where to find it
	Slide 4: Where to find it
	Slide 5: Where to find it
	Slide 6: Views – By repository
	Slide 7: Views – By repository
	Slide 8: Views – Team capacity
	Slide 9: An Example
	Slide 10: An Example
	Slide 11: An Example
	Slide 12: Keeping up to Date
	Slide 13: Processing and Analysis Code
	Slide 14: Analysis Repository Structure
	Slide 15: Code Quality
	Slide 16: The Model
	Slide 17: Adding to pico


