

Freon Cart Update

2024-08-19

Mackenzie.dean@queensu.ca

Recap/Intro

- Control PICO-500 working fluid (C3F8)
 - o Fill
 - o Drain
 - \circ Sampling
 - Recirculation
 - \circ Recovery
 - \circ IV PSV
 - \circ Bubbler
 - \circ Vacuum
- C3F8 \rightarrow Active Fluid (Octafluoropropane / R218)
- Temperature Ranges
 - 10°C to 20°C
 -25°C to 30°C
- Pressures Range
 - \odot 25 psia to 200 psia

Since Last Meeting

- 3D Design is essentially final • Cylinder & Line heaters TBD
- Bubbler System designed and components ordered
- Purifier shell testing complete

Currently

- 8020 framing ordered
- Received quote for many off the shelf components
 - \circ Swagelok
 - Bellows sealed valves
 - Welded tube fittings
 - VCR fittings
 - PSVs
 - Pneumatic valve
- Bubbler components ordered
- Started to create drawing package
 - o Frame
 - \circ Main plate
 - o Assembly
- Contacted possible fabricators Certified by TSSA and can provide sanitary orbital welding
 - \circ Pure Ingenuity
 - \circ Highland
 - \circ CROM
 - o Swagelok

Next Steps

- Bubbler to be built and tested
- Order all off the shelf components
 - Swagelok
 - Mcmaster Carr
 - IdealVac
 - Lesker

• Prepare and submit TSSA registration and fabrication RFQ

Bubbler System

Functions

- Prevent moist lab air from reaching the PSV
 on the cold plate and freezing
 Provide a buffer for lab pressure swings
 Exhaust freon from PSV if required
- Filled with Mineral Oil, attached to vacuum manifold
- Located on the back of the freon cart
- Next step is to build and test it at queens

Bubbler Testing

- Leak testing
 - Pump down and sniff with helium
- Water/N2 testing

 Fill bubbler with water
 Flow N2 through at minimum
 - 150 SLPM (comparable to C3F8 at 60 SLPM design flow rate)
- Goals
 - Monitor bubbler upstream pressure
 - Monitor discharge side of bubbler for splashing

(red items temporary for testing)

or PT

Inlet to bubbler (leak detector or N2 cylinder + adjustable flowmeter)

TSSA Submissions

Variance submission covering Dytran + Pall purifier

 Include burst test report and datasheets
 SNOLAB needs to sign off on application (in progress)

 Category H registration covering freon cart all the way up to connection to PV

RFQ for Freon Cart

• Scope

- Prepare engineering documentation for the freon system, including applicable B31.3 calculations
- Submit package to TSSA for Category H registration covering
 - High pressure sections of freon panel (i.e. vacuum segments, IV PSV, and bubbler are excluded)
 - High pressure field tubing runs between freon panel and PV
 - High pressure freon feedthroughs on VJ
 - Cold plate

\odot Supply parts not explicitly provided by PICO

 Manufacture, <u>by orbital weld</u>, assemble, and test the freon panel, cold plate, and connecting tubing spool pieces according to applicable TSSA/B31.3 requirements

RFQ contd

- Exclusions
 - PICO will supply fittings, instruments, and 80/20 frame to fabricator
 - Bubbler will be made in house and does not need to go to fabricator
- Testing
 - Helium leak acceptance test by PICO
 - Hydrotest per B31.3 by fabricator
 - Purifier cannot be installed for hydrotest

RFQ contd

• PICO submitted documentation will include

- P&ID excerpt of registered sections
- Instrumentation list with CRNs for each component (will list CRN TBD for Dytran + purifier)
- Want to keep some flexibility for small changes Include statement in RFP and drawings: may have more or less of the same components depending on PICO requirement, but will remain under the maximum size limitations of the design per Cat H fitting limits (max 42 L)
- G/A drawings
 - 80/20 frame
 - Freon panel assembly
 - Cold plate assembly
 - VJ feedthroughs (freon in, out, IV PSV discharge)
 - Details of field spool pieces (12' sections, flex hoses)

$\,\circ\,$ CAD models

- Freon panel assembly
- Cold plate assembly
- VJ feedthroughs (freon in, out, IV PSV discharge)

Timeline

- August
 - Issue draft RFQ for freon panel fabrication
 - Review by Mackenzie
- September
 - Order components (Swagelok, PTs, regulators, PSVs, vacuum fittings)
 - Build 80/20 frame
 - Submit variance application for Dytran + Pall Purifier
 - Send RFQ for freon panel fabrication (Highland, CROM, Pure Ingenuity, Swagelok)
- October
 - Award PO to fabricator for freon panel
 - Submit TSSA application package for freon panel Category H registration
- January
 - Receive TSSA CRN for freon panel
 - Receive TSSA variance approval
 - Begin panel fabrication
- March
 - Pressure test freon panel
 - Complete helium leak acceptance test
- April
 - Ship panel to SNOLAB

Hazards

- Re-capturing procedure
- Regulations for use of Freon
 - \circ C3F8 \rightarrow Reg. 463/10 \rightarrow Ozone depleting substance
 - \odot Any discharges must be reported to SNO lab, discharges of over 100kg to be reported to MOE
 - Reference Freon Accidental Release document
 - \circ Leak checks
 - \circ Record keeping

Cold Plate

• PSV 7417

 Emergency pressure relief for Freon
 Parker CYF10MM200 – Cryogenic Thermal Relief Valve

• Pneumatic valves

 \odot Swagelok bellows sealed VCR

- PT's
- Dytran
- Cooling coil on under side

COLD PLATE

Status

- Design can be orbital welded as is

 Checked with fabricator clearances are sufficient for weld head
- Pneumatic valves are large but fit
- Mounting needs a bit of work
- Connection points seem feasible

Cube Hall Layout

- 2 layouts
 - Pneumatic Panel Perpendicular to Freon cart
 - Both freon cylinders can fit beside Freon cart
 - Pneumatic panel Parallel to Freon cart
 - 1 Freon cylinder beside Freon cart and 1 must go somewhere else on deck
- Both layouts seem feasible
 - Do we prefer freon cylinders side by side or potentially easier access to Pneumatic Panel

Water Tank Liner Holes

- Holes were scanned and added to the model
- Holes of interest I've highlighted in blue

• Overlap: Hydraulic Cart

Layout 2

• Same concern

V 📷

