

EuCAPT Astroneutrino Theory Workshop 2024 Prague, Czech Republic, Sept. 2024

Decoherence in neutrino oscillations and the Gallium anomaly

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

HIDDe (V Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

www.kit.edu

Outline

- reactor experiments
- A QFT calculation of standard decoherence effects in reactor and radioactive source experiments w. Raphael Krüger, arXiv:2303.15524
- decoherence without sterile neutrinos w. Yasaman Farzan, arXiv:2306.09422

• Motivation: reactor and gallium anomalies, general decoherence effects in

• An explanation of the gallium anomaly in terms of new physics quantum

The gallium anomaly

	$\chi^2_{\rm null}/{ m dof}$	<i>p</i> -value		
CS1, BEST	32.1/2	$1.1 \times 10^{-7} (5.3\sigma)$		
CS1, all	36.3/6	$2.4 \times 10^{-6} (4.7\sigma)$		
CS2, BEST	34.7/2	$2.9 \times 10^{-8} (5.5\sigma)$		
CS2, all	38.4/6	$9.4 \times 10^{-7} (4.9\sigma)$		

Farzan, TS, 2306.09422 cross sections CS1, CS2 from Haxton et al., 2303.13623 electron capture decay: ${}^{51}Cr \rightarrow {}^{51}V + \nu_e$ $E_{\nu} = 750 \text{ keV} (90\%) \& 430 \text{ keV} (10\%)$

R = observed detection rate / predicted rate

see also Berryman, Coloma, Huber, TS, Zhou, 2111.12530; Goldhagen, Maltoni, Reichard, TS, 2109.14898; Brdar, Gehrlein, Kopp, 2303.05528

severe tension of $4-5\sigma$

Can quantum decoherence have an effect on the gallium/reactor tension?

- Arguelles, Bertolez-Martinez, Salvado, Impact of Wave Packet Separation in Low-Energy Sterile Neutrino Searches [2201.05108]
- Arguelles, Conrad et al., New Clues About Light Sterile Neutrinos: Preference for Models with Damping Effects in Global Fits [2211.02610]
- Akhmedov, Smirnov, Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, [2208.03736]; Jones, Comment on... [2209.00561], Akhmedov, Smirnov, Reply to comment... [2210.01547]

 Jones, Marzec, Spitz, The Width of a Beta-decay-induced Antineutrino Wavepacket [2211.00026]

Can quantum decoherence effects show up in future reactor experiments?

 High-precision reactor experiment JUNO coll., 1507.05613

decoherence effects in JUNO? Gouvea, Romeri, Ternes, 2005.03022; Wang et al. (JUNO) 2112.14450; Marzec, Spitz, 2208.04277

JUNO 100k IBD Events

• "first principle" calculation of decoherence effects

R. Krüger, T. Schwetz, 2303.15524 (EPJC)

 perform a QFT calculation of the oscillation amplitude, taking into account localization of external particles for reactor and gallium experiments

Decoherence in neutrino oscillations large literature (very incomplete selection):

lecture by A. Smirnov S. Nussinov, Solar Neutrinos and Neutrino Mixing, PLB 63 (1976) 201; B. Kayser, On the Quantum Mechanics of Neutrino Oscillation, PRD 24 (1981) 110; • C. Giunti, C. W. Kim, U. W. Lee, When Do Neutrinos Really Oscillate?: Quantum Mechanics of Neutrino Oscillations, PRD 44 (1991) 3635; • J. Rich, The Quantum Mechanics of Neutrino Oscillations, PRD 48 (1993) 4318; • K. Kiers, S. Nussinov, N. Weiss, Coherence Effects in Neutrino Oscillations, PRD 53 (1996) 537; • W. Grimus and P. Stockinger, Real Oscillations of Virtual Neutrinos, PRD 54 (1996) 3414; • C. Giunti, C.W. Kim, U.W. Lee, When Do Neutrinos Cease to Oscillate?, PLB 421 (1998) 237; • C. Giunti and C. W. Kim, Coherence of Neutrino Oscillations in the Wave Packet Approach, PRD 58 (1998) 017301; L. Stodolsky, The Unnecessary Wave Packet, PRD 58 (1998) 036006; • W. Grimus, P. Stockinger, and S. Mohanty, The Field Theoretical Approach to Coherence in Neutrino Oscillations, PRD 59 (1999) 013011; • C. Y. Cardall, Coherence of Neutrino Flavor Mixing in Quantum Field Theory, PRD 61 (2000) 073006; • M. Beuthe, Oscillations of Neutrinos and Mesons in Quantum Field Theory, Phys. Rept. 375 (2003) 105; [hep-ph/0109119]. • E. K. Akhmedov and A. Y. Smirnov, Paradoxes of Neutrino Oscillations, Phys. Atom. Nucl. 72 (2009) 1363; [0905.1903]. • E. K. Akhmedov and J. Kopp, Neutrino Oscillations: Quantum Mechanics vs Quantum Field Theory, JHEP 04 (2010) 008; • D. Hernandez and A. Yu. Smirnov, Active to sterile neutrino oscillations: Coherence and MINOS results, PLB706 (2012) 360; • E. Akhmedov, D. Hernandez, and A. Smirnov, Neutrino Production Coherence and Oscillation Experiments, JHEP 04 (2012) 052;. • B. J. P. Jones, Dynamical Pion Collapse and the Coherence of Conventional Neutrino Beams, PRD 91 (2015), no. 5 053002

 $\begin{aligned} \mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}} &= \langle \nu_{\beta} | & \text{propagation} & | \nu_{\alpha} \rangle \\ &= \sum_{i,j} U_{\beta j} \langle \nu_{j} | & e^{-i(E_{i}t - p_{i}x)} & | \nu_{i} \rangle U_{\alpha i}^{*} = \sum_{i} U_{\beta i} U_{\alpha i}^{*} e^{-i(E_{i}t - p_{i}x)} \end{aligned}$

 $\mathcal{A}_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \langle \nu_{\beta} |$ propagation $|\nu_{\alpha} \rangle$ $= \sum_{i,i} U_{\beta j} \langle \nu_j | e^{-i(E_i t - p_i x)} | \nu_i \rangle U_{\alpha i}^* = \sum_i U_{\beta i} U_{\alpha i}^* e^{-i(E_i t - p_i x)}$

 $\rightarrow \quad P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \left| \mathcal{A}_{\nu_{\alpha} \rightarrow \nu_{\beta}} \right|^{2} = \sum_{i} |U_{\beta i} U_{\alpha i}^{*}|^{2} + \sum_{i \neq j} |U_{\beta j} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\alpha i} e^{-i\phi_{j i}}$

interference terms

$$\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}} = \langle \nu_{\beta} | \text{ propagation } | \nu_{\alpha} \rangle$$

=
$$\sum_{i,j} U_{\beta j} \langle \nu_{j} | e^{-i(E_{i}t - p_{i} \times)} | \nu_{i} \rangle U_{\alpha i}^{*} = \sum_{i} U_{\beta i} U_{\alpha i}^{*} e^{-i(E_{i}t - p_{i} \times)}$$

$$\rightarrow P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \left| \mathcal{A}_{\nu_{\alpha} \rightarrow \nu_{\beta}} \right|^{2} =$$

with phase differences:

$$\phi_{ji} = (E_j - E_i)t - (p_j - p_i)x$$

after some hand waving: $\phi_{ji} \approx \frac{-\gamma}{2E}$

ו
$$|
u_lpha
angle$$

$$\sum_{i} |U_{\beta i} U_{\alpha i}^{*}|^{2} + \sum_{i \neq j} U_{\beta j} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\alpha i} e^{-i\phi_{ji}}$$

interference terms

with
$$E_i^2 = p_i^2 + m_i^2$$

$$rac{\Delta m_{ji}^2 L}{2 E}$$
 with $\Delta m_{ji}^2 \equiv m_j^2 - m_i^2$

$$\mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}} = \langle \nu_{\beta} | \text{ propagation } | \nu_{\alpha} \rangle$$

=
$$\sum_{i,j} U_{\beta j} \langle \nu_{j} | e^{-i(E_{i}t - p_{i}x)} | \nu_{i} \rangle U_{\alpha i}^{*} = \sum_{i} U_{\beta i} U_{\alpha i}^{*} e^{-i(E_{i}t - p_{i}x)}$$

$$\rightarrow \quad P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \left| \mathcal{A}_{\nu_{\alpha} \rightarrow \nu_{\beta}} \right|^{2}$$

2-flavour: $P = \frac{1}{2} \sin \theta$

$$\sum_{i} |U_{\beta i}U_{\alpha i}^{*}|^{2} + \sum_{i \neq j} U_{\beta j}U_{\alpha j}^{*}U_{\beta i}^{*}U_{\alpha i}e^{-i\phi_{ji}}$$

interference terms

$$n^2 2\theta \left(1 - \cos \frac{\Delta m^2 L}{2E}\right)$$

naive approach is problematic at least for the following reasons:

naive approach is problematic at least for the following reasons:

- production and detection regions are localised in space \rightarrow inconsistent with plane wave ansatz for neutrino propagation $\propto e^{-i(E_i t - p_i x)}$
- plane waves correspond to states with exact energy/momentum → neutrino mass states are distinguishable particles why is the sum in the amplitude coherent (inside modulus)?

naive approach is problematic at least for the following reasons:

- production and detection regions are localised in space \rightarrow inconsistent with plane wave ansatz for neutrino propagation $\propto e^{-i(E_i t - p_i x)}$
- plane waves correspond to states with exact energy/momentum → neutrino mass states are distinguishable particles why is the sum in the amplitude coherent (inside modulus)?

Two approaches:

- assume wave-packets for neutrinos
- QFT approach, neutrino as internal line, wave-packets for external particles
- relation of the two approaches e.g., Akhmedov, Kopp, JHEP (2010) [1001.4815]

Decoherence

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{i} |U_{\beta i} U_{\alpha i}^{*}|^{2} + \xi \sum_{i \neq j} U_{\alpha i}^{*}|^{2}$$

decoherence: $0 \le \xi \le 1 \rightarrow$ damping of interference terms

 $U_{\beta j}U_{\alpha j}^{*}U_{\beta i}^{*}U_{\alpha i}e^{-i\phi_{ji}}$

interference terms

Decoherence

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{i} |U_{\beta i} U_{\alpha i}^{*}|^{2} + \xi \sum_{i \neq j} U_{\beta i} U_{\alpha i}^{*}|^{2} + \xi \sum_{i \neq j} U_{\alpha i}^{*}|^{2}$$

decoherence: 0 $\leq \xi \leq$ 1 \rightarrow damping of interference terms

• "Quantum" decoherence: $\xi < 1$ appears already at amplitude level:

$$|\mathcal{A}|^2 = \sum_{ij} \mathcal{A}_j^* \mathcal{A}_i$$

 $U_{\beta j}U_{\alpha j}^{*}U_{\beta i}^{*}U_{\alpha i}e^{-i\phi_{ji}}$

interference terms

• "Classical" decoherence: $\xi < 1$ due to averaging of the probability:

$$\overline{P} \propto \int dx |\mathcal{A}(x)|^2 , \qquad x = L, E$$

- Feynman diagram for joint process of production, propagation, detection
- early papers:
- review paper: M. Beuthe, Phys. Rept. 375 (2003) 105 [hep-ph/0109119]

Rich, 1993; Giunti, Kim, Lee, Lee, 1993; Grimus, Stockinger, 1996; Kiers, Weiss, 1998

QFT approach to neutrino oscillations

• macroscopic separation of the two vertices • wave packets for external particles

QFT approach to neutrino oscillations

Figure 1: Feynman diagram for the total process in an oscillation experiment.

reactor experiments: 3 Neutrino oscillation amplitude and event rate b production: $Cr \rightarrow V + \nu_e$ We now move to the discussion of the amplitude relevant for neutrino oscillation experiments considertection: Gasterine poduction, propagation and detection: Gasterine, we consider neutrino production by the decay of a particle A into two final state particles and an anti-neutrino, $A \rightarrow 1+2+\bar{\nu}$, and anti-neutrino detection via the process $B + \bar{\nu} \rightarrow 3+4$. We have in mind reactor neutrinos, where the production process corresponds to the beta decay of a_{\bullet} nucleus (A), and the detection process is the inverse beta decay reaction on a proton (B), but

QFT approach to neutrino oscillations

- coherence properties of oscillation amplitude is determined by localization of external particles and their velocities
- assume Gaussian wave packets in momentum space:

$$|\phi\rangle = \int d\tilde{\mathbf{k}}\phi(\mathbf{k})|\mathbf{k}\rangle$$

$$\phi(\mathbf{k}) = \left(\frac{2\pi}{\sigma^2}\right)^{3/4} e^{-\frac{(\mathbf{k}-\mathbf{p})^2}{4\sigma^2}}$$

effective momentum and energy spreads for neutrino production and detection processes

$$i\mathcal{A}_{\alpha\beta} \propto \sum_{j} U_{\alpha j} U_{\beta j}^{*} \int \frac{d^{4}p}{(2\pi)^{4}} i\tilde{\mathcal{M}}_{P} \frac{\not p - m_{j}}{p^{2} - m_{j}^{2} + i\epsilon} i\tilde{\mathcal{M}}_{D} e^{-ip(x_{D} - x_{P})}$$
$$\times \prod_{l=P,D} \frac{\pi^{2}}{\sigma_{pl}^{3}\sigma_{El}} \exp\left[-\frac{(\mathbf{p} - \mathbf{p}_{l})^{2}}{4\sigma_{pl}^{2}} - \frac{(p^{0} - E_{l} - \mathbf{v}_{l}(\mathbf{p} - \mathbf{p}_{l}))^{2}}{4\sigma_{El}^{2}}\right]$$

effective momentum and energy spreads for neutrino production and detection processes

generalizations for reactor & gallium configurations:

- finite life-time of decaying particles
- interactions with environment (effect in analogy to collisional line broadening)

$$i\mathcal{A}_{\alpha\beta} \propto \sum_{j} U_{\alpha j} U_{\beta j}^{*} \int \frac{d^{4}p}{(2\pi)^{4}} i\tilde{\mathcal{M}}_{P} \frac{\not p - m_{j}}{p^{2} - m_{j}^{2} + i\epsilon} i\tilde{\mathcal{M}}_{D} e^{-ip(x_{D} - x_{P})}$$
$$\times \prod_{l=P,D} \frac{\pi^{2}}{\sigma_{pl}^{3}\sigma_{El}} \exp\left[-\frac{(\mathbf{p} - \mathbf{p}_{l})^{2}}{4\sigma_{pl}^{2}} - \frac{(p^{0} - E_{l} - \mathbf{v}_{l}(\mathbf{p} - \mathbf{p}_{l}))^{2}}{4\sigma_{El}^{2}}\right]$$

$$i\mathcal{A}_{\alpha\beta} \propto \sum_{j} U_{\alpha j} U_{\beta j}^{*} \int \frac{d^{4}p}{(2\pi)^{4}} i\tilde{\mathcal{M}}_{P} \frac{\not{p} - m_{j}}{p^{2} - m_{j}^{2} + i\epsilon} i\tilde{\mathcal{M}}_{D} e^{-ip(x_{D} - x_{P})}$$
$$\times \prod_{I=P,D} \frac{\pi^{2}}{\sigma_{pl}^{3}\sigma_{El}} \exp\left[-\frac{(\mathbf{p} - \mathbf{p}_{l})^{2}}{4\sigma_{pl}^{2}} - \frac{(p^{0} - E_{l} - \mathbf{v}_{l}(\mathbf{p} - \mathbf{p}_{l}))^{2}}{4\sigma_{El}^{2}}\right]$$

perform integral over neutrino momentum $\int d^3 p$ taking into account macroscopic separation of source and detector: $L = |\mathbf{x}_D - \mathbf{x}_P| \rightarrow \infty$ Grimus, Stockinger, 1996 \rightarrow neutrinos go onshell $\mathbf{p}_j = \hat{\mathbf{I}}_{\sqrt{p_0^2 - m_j^2}}$

$$i\mathcal{A}_{\alpha\beta} \propto \sum_{j} U_{\alpha j} U_{\beta j}^{*} \int \frac{d^{4}p}{(2\pi)^{4}} i\tilde{\mathcal{M}}_{P} \frac{\not p - m_{j}}{p^{2} - m_{j}^{2} + i\epsilon} i\tilde{\mathcal{M}}_{D} e^{-ip(x_{D} - x_{P})}$$
$$\times \prod_{I=P,D} \frac{\pi^{2}}{\sigma_{pl}^{3}\sigma_{El}} \exp\left[-\frac{(\mathbf{p} - \mathbf{p}_{l})^{2}}{4\sigma_{pl}^{2}} - \frac{(p^{0} - E_{l} - \mathbf{v}_{l}(\mathbf{p} - \mathbf{p}_{l}))^{2}}{4\sigma_{El}^{2}}\right]$$

- neutrino production
- > perform the integral over the neutrino energy $\int dp_0$

square the amplitude and perform a time average due to unobserved time of

...after some algebra:

$$\overline{|\mathcal{A}_{\alpha\beta}|^2} \propto \exp\left[i\frac{\Delta m^2 L}{2E_0}\right] \times \exp\left[-\frac{1}{2}\left(\frac{\Delta m^2}{4E_0\sigma_m}\right)^2\right] \times \exp\left[-\frac{1}{2}\left(\frac{\Delta m^2 L\sigma_{\rm en}}{2E_0^2}\right)^2\right]$$

σ_m, σ_{en} are calculable from localization properties of initial and final state particles

standard oscillation phase

localization decoherence ξ_{loc}

energy decoherence ξ_{en}

• Localization decoherence:

$$\xi_{\rm loc} = \exp\left[-\frac{1}{2}\left(\frac{\Delta m^2}{4E_{\nu}\sigma_m}\right)^2\right] = \exp\left[-2\pi^2\left(\frac{\delta_{\rm loc}}{L_{\rm osc}}\right)^2\right] \quad \text{with} \quad \sigma_m\delta_{\rm loc} = \frac{1}{2}$$

- be identified: $\sigma_m \gg \Delta m^2 / E_{\nu}$

energy/momentum uncertainty be large enough that individual mass states cannot

• production/detection regions be localized better than oscillation length: $\delta_{loc} \ll L_{osc}$

• Localization decoherence:

$$\xi_{\rm loc} = \exp\left[-\frac{1}{2}\left(\frac{\Delta m^2}{4E_{\nu}\sigma_m}\right)^2\right] = \exp\left[-2\pi^2\left(\frac{\delta_{\rm loc}}{L_{\rm osc}}\right)^2\right] \quad \text{with} \quad \sigma_m\delta_{\rm loc} = \frac{1}{2}$$

- be identified: $\sigma_m \gg \Delta m^2 / E_{\nu}$
- Energy decoherence:

 $\xi_{\rm en} = \exp \left[-\frac{1}{2} \right]$

- the neutrino energy needs to be well
- can be interpreted as neutrino wave p

• energy/momentum uncertainty be large enough that individual mass states cannot

• production/detection regions be localized better than oscillation length: $\delta_{loc} \ll L_{osc}$

$$\frac{1}{2} \left(\frac{\Delta m^2 L \sigma_{\rm en}}{2E_{\nu}^2} \right)^2 = \exp \left[-2\pi^2 \left(\frac{L}{L_{\rm osc}} \frac{\sigma_{\rm en}}{E_{\nu}} \right)^2 \right]$$

defined
$$\sigma_{\rm en} \ll E_{\nu}$$
 packet separation ($v_j pprox 1 - m_j^2/2E_{\nu}^2$)

Classical averaging

 $\overline{P} \propto \int dx |\mathcal{A}(x)|^2$

decoherence:

$$\delta_{\rm loc}^2 \to \delta_{\rm loc}^2 + \delta_{\rm clas}^2$$
, $\sigma_{\rm en}^2 \to \sigma_{\rm en}^2 + \sigma_{\rm clas}^2$

- Indistinguishable phenomenologically Kiers, Nussinov, Weiss, 1996; Stodolsky, 1998; Ohlsson, 2001
- the quantum level

2
, $x = L, E$

• Classical averaging of $|\mathcal{A}|^2$ over space and energy has the same effect as intrinsic QM

• quantum mechanical uncertainties provide a fundamental lower bound on the uncertainty

• to observe QM decoherence, classical averaging effects have to be suppressed down to

Classical averaging

- In classical averaging due to experimental reasons: size of production region, finite detector resolutions (in space and energy),...
- fundamental averaging effects due to experimental configuration and physics principles: • phase space integrals of unobserved particles:
 - reactor experiments: momenta of outgoing particles in the source, neutron in the detector gallium: momenta of all outgoing particles (counting experiment)
 - gallium experiments: Doppler broadening of the decay line from ${\rm Cr}
 ightarrow {\rm V} +
 u_o$ due to thermal motion of source particles

R. Krüger, TS, 2303.15524 Numerical estimates for gallium and reactors

- nuclei localization: inter-atomic distances in cristal lattice or fluid
- velocities: either thermal velocities or velocities for typical kin. energies of outgoing particles
- electron/positron localization: distance the particle travels until it deposits one mean excitation energy (integrating $\langle dE/dx \rangle$ Bethe equation)

	Particle	$\delta_x \text{ [nm]}$	$\sigma [{\rm eV}]$	v
Reactor (P)	N	0.24	410	1×10
$N \to N' + e^- + \overline{\nu}_e$	N'	0.24	410	4×10
	e^{-}	260	0.38	0.99
Reactor (D)	p	0.1	990	5×10
$p + \overline{\nu}_e \to n + e^+$	n	5×10^{6}	2×10^{-5}	5×10
	e^+	320	0.3	0.99
Gallium (P)	Cr	0.20	480	7×10
$\mathrm{Cr} \to \mathrm{V} + \nu_e$	V	0.20	480	2×10
Gallium (D)	Ga	0.27	370	6×10
$Ga + \nu_e \rightarrow Ge + e^-$	Ge	0.27	370	1×10
	e^{-}	310	0.32	0.83

s. also Akhmedov, Smirnov, 2208.03736

Numerical estimates for gallium and reactors

Incalization decoherence:

for reactor and gallium experiments dominated by hadronic particles

$$\sigma_m \simeq (400 - 500) \,\mathrm{eV}\,, \qquad \delta_{\mathrm{loc}} = \frac{1}{2\sigma_m} \simeq 0.2 \,\mathrm{nm}$$
$$-\ln\xi_{\mathrm{loc}} = \frac{1}{2} \left(\frac{\Delta m^2}{4E_{\nu}\sigma_m}\right)^2 \approx 1.3 \times 10^{-19} \left(\frac{\Delta m^2}{1 \,\mathrm{eV}^2}\right)^2 \left(\frac{1 \,\mathrm{MeV}}{E_{\nu}}\right)^2 \left(\frac{500 \,\mathrm{eV}}{\sigma_m}\right)^2$$

 \Rightarrow QM localization decoherence irrelevant for all practical purposes: $\xi_{loc} = 1$ Note: classical spatial averaging is relevant and needs to be taken into account

Numerical estimates for gallium and reactors

• energy decoherence:

including phase space integration and Doppler broadening:

 $\sigma_{\rm en} \approx 0.5 \, {\rm eV}, \qquad \delta_{\rm en} \approx 200 \, {\rm nm}$

$$-\ln \xi_{\rm en} = 2\pi^2 \left(\frac{L}{L_{\rm osc}} \frac{\sigma_{\rm en}}{E_{\nu}} \right)^2 \approx 4.9$$

purposes: $\xi_{en} = 1$

Note: classical energy averaging is relevant and needs to be taken into account

 $\times 10^{-12} \left(\frac{L}{L_{occ}}\right)^2 \left(\frac{1 \,\mathrm{MeV}}{F_{\rm W}}\right)^2 \left(\frac{\sigma_{\rm en}}{0.5 \,\mathrm{eV}}\right)^2$

 \Rightarrow QM energy decoherence ("wave packet separation") irrelevant for all practical

R. Krüger, TS, 2303.15524

Summary energy decoherence

• our result: $\sigma_{en} \approx 0.5 \,\mathrm{eV}$, $\delta_{en} \approx 200 \,\mathrm{nm}$

energy resolution of typical reactor neutrino detectors:

 $(0.03 - 0.06) \,\mathrm{MeV} \sqrt{E/\mathrm{MeV}}$

about 6 orders of magnitude larger than σ_{en} !

• phenomenological constraint is dominated by classical energy resolution: $\sigma < 0.47 \,\mathrm{MeV}, \delta > 2.1 \times 10^{-4} \,\mathrm{nm}$ [Gouvea, Romeri, Ternes, 2005.03022, 2104.05806]

R. Krüger, TS, 2303.15524 s. also Akhmedov, Smirnov, 2208.03736

$$\Rightarrow \sigma_{clas} \simeq 0.1 \text{ MeV}$$

QM decoherence negligible — dominated by classical averaging (holds also for JUNO)

Any decoherence effect on top of classical averaging will point towards new physics!

Barenboim, Mavromatos, Sarkar, Waldron-Lauda, 2006 Fogli, Lisi, Marrone, Montanino, Palazzo, 2007 Farzan, TS, Smirnov, 2008; Bakhti, Farzan, TS, 2015 Guzzo, de Holanda, Oliveira, 2014 Hellmann, Pas, Rani, 2022 Banks, Kelly, McCullough, 2023

Decoherence explanation of the gallium anomaly Y. Farzan, TS, 2306.09422

 three SM neutrinos (no steriles) modified QM evolution:

 $\frac{d\rho}{dt} = i[\rho, H] - \{\rho, D^2\} + 2D\rho D$

$$H = \frac{1}{2E_{\nu}} \operatorname{diag}(m_1^2, m_2^2, m_3^2) ,$$

 $D = \operatorname{diag}(d_1, d_2, d_3),$

Decoherence explanation of the gallium anomaly Y. Farzan, TS, 2306.09422

 three SM neutrinos (no steriles) modified QM evolution:

 $\frac{d\rho}{dt} = i[\rho, H] - \{\rho, D^2\} + 2D\rho D$ • damping of interference terms:

$$P_{ee} = \sum_{i=1}^{3} |U_{ei}|^4 + \sum_{i \neq j} |U_{ei}|^2 |U_{ej}|^2 e^{-\gamma_{ij}L} e^{-i\phi_{ij}}$$

$$H = \frac{1}{2E_{\nu}} \operatorname{diag}(m_1^2, m_2^2, m_3^2) ,$$

 $D = \operatorname{diag}(d_1, d_2, d_3),$

$$\gamma_{ij} = (d_i - d_j)^2$$

phenomenological ansatz:

 $P_{ee} = \sum_{i=1}^{3} |U_{ei}|^4 + \sum_{i \neq j} |U_{ei}|^2 |U_{ej}|^2 e^{-\gamma_{ij}L} e^{-i\phi_{ij}}$

 $\gamma_{ij} = \frac{1}{\lambda_{ij}} \left(\frac{E_{\text{ref}}}{E_{\nu}} \right)'$

phenomenological ansatz:

- $r \neq 1$ violates Lorentz invariance
- r = -2: quantum gravity models
- r = -1: cross section like behaviour
- r = 2: light cone fluctuations
- r = 1: phenomenologically similar to invisible neutrino decay

 $P_{ee} = \sum_{i=1}^{3} |U_{ei}|^4 + \sum_{i \neq j} |U_{ei}|^2 |U_{ej}|^2 e^{-\gamma_{ij}L} e^{-i\phi_{ij}}$

 $\gamma_{ij} = \frac{1}{\lambda_{ij}} \left(\frac{E_{\text{ref}}}{E_{\nu}} \right)^{-1}$

• localization and energy decoherence r = 2 or 4, but have different L dependence (L^0 or L^2)

Decoherence explanation of the gallium anomaly Y. Farzan, TS, 2306.09422

Decoherence explanation of the gallium anomaly Y. Farzan, TS, 2306.09422

$$r = 12$$

$$\frac{\chi^2_{\text{min}}/\text{dof} \quad p\text{-val.} \quad \Delta\chi^2 \quad \#\sigma \quad \lambda_{12}}{2.2/1 \quad 0.14 \quad 32.5 \quad 5.4 \quad 1.}$$
all
$$9.2/5 \quad 0.10 \quad 29.2 \quad 5.0 \quad 1.$$

$$P_{ee}^{\text{gal}} \approx 1 - \frac{1}{2}\sin^2 2\theta_{13} - \frac{1}{2}\cos^4 \theta_{13}\sin^2 2\theta_{12} \left(1 + \frac{1}{2}\cos^4 \theta_{13}\sin^2 2\theta_{12}\right) + \frac{1}{2}\sin^2 2\theta_{13} + \frac{1}{2}\cos^4 \theta_{13} + \frac{1}{2}\cos^4 \theta_{13} + \frac{1}{2}\sin^2 2\theta_{13} + \frac{1}{2}\cos^4 \theta_{13} + \frac{1}{2}\cos^4$$

Consistency with other oscillation data

Consistency with other oscillation data

- solar and reactor neutrinos require steep energy dependence of decoherence effects: $\gamma \propto E_{\nu}^{-r}$, $r \gtrsim 10 - 12$
 - \Rightarrow other oscillation evidences not affected

- solar and reactor neutrinos require steep energy dependence of decoherence effects: $\gamma \propto E_{\nu}^{-r}$, $r \gtrsim 10 - 12$
 - \Rightarrow other oscillation evidences not affected
- predict distance dependence in gallium exps. (still compatible with BEST) slightly modified MSW transition region in $P_{\rho\rho}(E_{\mu})$ for solar neutrinos

- solar and reactor neutrinos require steep energy dependence of decoherence effects: $\gamma \propto E_{\nu}^{-r}$, $r \gtrsim 10 - 12$
 - \Rightarrow other oscillation evidences not affected
- predict distance dependence in gallium exps. (still compatible with BEST) slightly modified MSW transition region in $P_{\rho\rho}(E_{\mu})$ for solar neutrinos
- no effect predicted in MiniBooNE or SBL reactors

- solar and reactor neutrinos require steep energy dependence of decoherence effects: $\gamma \propto E_{\nu}^{-r}$, $r \gtrsim 10 - 12$ \Rightarrow other oscillation evidences not affected
- predict distance dependence in gallium exps. (still compatible with BEST) slightly modified MSW transition region in $P_{\rho\rho}(E_{\mu})$ for solar neutrinos
- no effect predicted in MiniBooNE or SBL reactors
- expect standard three-neutrino neutrino cosmology

Can be combined with decoherence explanation of LSND

Bakhti, Farzan, TS [1503.05374] assume Gaussian energy 10^{7} dependence:

 $\lambda_2 = 2 \text{ m}, E_2 = 0.75 \text{ MeV}$

 $\lambda_3 = 300 \,\mathrm{m}, E_3 = 35 \,\mathrm{MeV}$

 $\gamma_{ij=(d_i-d_j)^2}$

 10^{-1}

 10^{-3}

Summary

- BEST results make gallium anomaly highly significant $\approx 5\sigma$ difficult to explain without being in conflict with other data
- QFT framework to study decoherence effects standard QM localization/wave packet effects are negligible
- presented an explanation in terms of new-physics decoherence, with an LSND explanation

consistent with oscillation data, cosmology, and potentially compatible

Summary

- BEST results make gallium anomaly highly significant $\approx 5\sigma$ difficult to explain without being in conflict with other data
- QFT framework to study decoherence effects standard QM localization/wave packet effects are negligible
- presented an explanation in terms of new-physics decoherence, with an LSND explanation

consistent with oscillation data, cosmology, and potentially compatible

Thank you for your attention

Backup

Single vertex case

transition probability $i \rightarrow f$:

 $P_{if} = |\langle \phi_f | i \rangle$

definition of the matrix element for momentum states:

$$\left(\prod_{f} \langle \mathbf{k}_{f} | \right) iT\left(\prod_{i} | \mathbf{k}_{i} \rangle\right) = (2\pi)^{4} \delta^{(4)} \left(\sum_{f} k_{f} - \sum_{i} k_{i} \right) i\mathcal{M},$$

transition amplitude:

$$i\mathcal{A} = \prod_{f} \int d\tilde{\mathbf{k}}_{f} \phi_{f}^{*}(\mathbf{k}_{f}) \prod_{i} \int d\tilde{\mathbf{k}}_{i} \phi_{i}(\mathbf{k}_{i}) (2\pi)^{4} \delta^{(4)} \left(\sum_{f} k_{f} - \sum_{i} k_{i}\right) i\mathcal{M}$$

$$T|\phi_i\rangle|^2\equiv|i\mathcal{A}|^2$$

Single vertex case

transition probability $i \rightarrow f$:

 $P_{if} = |\langle \phi_f | i \rangle$

definition of the matrix element for momentum states:

$$\left(\prod_{f} \langle \mathbf{k}_{f} | \right) iT\left(\prod_{i} | \mathbf{k}_{i} \rangle\right) = (2\pi)^{4} \delta^{(4)} \left(\sum_{f} k_{f} - \sum_{i} k_{i} \right) i\mathcal{M},$$

transition amplitude:

$$i\mathcal{A} = \prod_{f} \int d\tilde{\mathbf{k}}_{f} \phi_{f}^{*}(\mathbf{k}_{f}) \prod_{i} \int d\tilde{\mathbf{k}}_{i} \phi_{i}(\mathbf{k}_{i}) (2\pi)^{4} \delta^{(4)} \left(\sum_{f} k_{f} - \sum_{i} k_{i} \right) i\mathcal{M}$$
$$= \int d^{4}x \prod_{f} \int d\tilde{\mathbf{k}}_{f} \phi_{f}^{*}(\mathbf{k}_{f}) e^{ik_{f}x} \prod_{i} \int d\tilde{\mathbf{k}}_{i} \phi_{i}(\mathbf{k}_{i}) e^{-ik_{i}x} i\mathcal{M}$$

$$T|\phi_i\rangle|^2\equiv|i\mathcal{A}|^2$$

Single vertex case

$$i\mathcal{A} \propto i\mathcal{M} \, \frac{\pi^2}{\sigma_p^3 \sigma_e} \exp\left[-\frac{1}{\sigma_p^3 \sigma_e}\right]$$

with $\Delta \mathbf{p} \equiv \sum_{i} \mathbf{p}_{i} - \sum_{f} \mathbf{p}_{f} ,$

and effective momentum and energy spreads:

$$\sigma_p^2 \equiv \sum_{i,f} \sigma_{i,f}^2 \,,$$

and a weighted velocity and velocity-squared:

$$\mathbf{v} \equiv \frac{1}{\sigma_p^2} \sum_{i,f} \sigma_{i,f}^2 \mathbf{v}_{i,f} , \qquad \mathbf{\Sigma} \equiv \frac{1}{\sigma_p^2} \sum_{i,f} \sigma_{i,f}^2 \mathbf{v}_{i,f}^2 , \qquad \mathbf{v}_{\mathbf{i}} \equiv \left. \frac{\partial E_i}{\partial \mathbf{k}_i} \right|_{\mathbf{k}_i = \mathbf{p}_i}$$

$$\frac{(\Delta \mathbf{p})^2}{4\sigma_p^2} - \frac{(\Delta E - \Delta \mathbf{pv})^2}{4\sigma_e^2} \right]$$

$$\Delta E \equiv \sum_{i} E_{p_i} - \sum_{f} E_{p_f}$$

$$\sigma_e^2 \equiv \sigma_p^2 (\boldsymbol{\Sigma} - \mathbf{v}^2)$$

