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• inflation and reheating
• formation of Dark Matter
• baryogenesis
• nucleosynthesis
• …

cosmos we 
observe today



Boltzmann Equations

• Equation of motion for classical phase space density

• Collision term imported from QFT in vacuum



scatterings:
quantum field theory

propagation between scatterings:
free classical particles

Boltzmann Equations



• picture the early universe as a series of collider events

• Often works well…. but misses a few crucial aspects:

• coherence and decoherence 

• quantum statistical effects on internal propagators

• screening of particles into quasiparticles

• collective excitations of the plasma 

• multiple coherent scatterings 

• non-perturbative effects 

Shortcomings of Boltzmann Equations

• “first principles” description makes sure we do not miss these

• At the same time: Need equations that are simple enough for parameter space scans 

⇒Quantum Kinetic Theory to make predictions for accelerator experiments



• Some of the shortcomings can be overcome with density matrix equations

Shortcomings of Boltzmann Equations

• In the early universe we in addition need the the continuity equation

• And of course the Friedmann equation

Raffelt/Sigl 1992



Quantitative Description
• Full information about quantum statistical system contained in von Neumann 

density operator, with equation of motion

• Equivalently: consider infinite tower of n-point functions with expectation values

• in practice usually one- and two-point functions are sufficient

• Expressing all observables in terms of correlation functions avoids semi-classical 
assumptions or reference to asymptotic states

• Equations of motion obtained from 2PI effective action in the Schwinger-Keldysh 
formalism (e.g. Kadanoff-Baym equations); usually non-Markovian and not suitable 
for parameter scans

• Obtain effective quantum kinetic equations suitable for numerics in a series of 
controlled approximations adapted to the problem under consideration (gradient 
expansion in Wigner space, loop truncation, quasiparticle approximation… )



Literature
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• S-matrix with projection on asymptotic states in infinite past/future nut ideal tool

• Define correlation functions on “closed time path” (CTP)

The following are all basically the same thing:

• Closed time-path formalism

• Schwinger-Keldysh formalism

• In-in formalism

• Real-time formalism (in equilibrium, as opposed to imaginary-time formalism)
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Closed Time Path Formalism

• Want to solve initial value problems, i.e., impose boundary conditions at given time

• S-matrix with projection on asymptotic states in infinite past/future nut ideal tool

• Define correlation functions on “closed time path” (CTP)

• Define propagator on the contour

• Formally consider field with time argument on the “forward” and “backward” parts of the 

contour like different fields

• Promotes propagator to a matrix

Time argument on forward branch

Time argument on backwards branch



Perturbation Theory

• Action is local, hence vertices either only connect “+”-fields or “-”-fields

• Therefore vertices are either “+” or “-”

• But fields can propagate into each other via off-diagonal proparators

Feynman rules



Equations of Motion
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• Split self-energy up according to time argument

• Tree-level mass is defined via inverse classical propagator
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Equations of Motion
• Schwinger-Dyson equation on the contour

• Consider for instance +- propagator

• Kadanoff-Baym Equations
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Thermal Equilibrium

• The von Neumann density matrix is

• Noticing that this is a time translation operator in imaginary time, we can establish

• And in momentum space

• This implies the Kubo-Martin-Schwinger (KMS) relations

• Explains the interpretation of the statistical propagator in terms of occupation numbers!

• Relations also allow to find all free propagators (since we already know the free spectral 

function)

• In equilibrium correlation functions only depend on the relative coordinates, and Fourier 

transform is well-defined (it’s static, homogeneous, isotropic)
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Quasiparticles
• In thermal equilibrium we can also find the full spectral function 

• With the retarded self-energy

• Its poles determine the dispersion relations for quasiparticles in the plasma. Consider the pole

• We obtain the dispersion relation (real part of the refractive index) by solving

• Then obtain width (imaginary part of refractive index) from 

• Near the pole this gives Breit-Wigner approximation
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Cutting Rules



Cutting Rules

Decay an inverse decay

Various scatterings



Fermions
• Define Wightman functions as

• From those obtain retarded and advanced functions

• As well as spectral and statistical propagators

• Which fulfil the Kadanoff-Baym equations



Fermion Propagators
• We can again find the free spectral function

• The KMS relations this time read

• Yielding propagators



Fermion Propagators
• We can rewrite this as

• And define the number of particles and antiparticles with given helicity as

• Where the helicity projectors are



Neutrino Matter Potential

• Resummed spectral function in analogy to scalar case
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Neutrino Matter Potential

• Resummed spectral function in analogy to scalar case

• Poles given by

• Self-energy structure in general (but at one loop no tensor in homogeneous universe)

• In the relativistic limit the dispersion relation reads

• Evaluating the integral gives



Density Matrix Equation
• So far we worked in equilibrium. Out of equilibrium we need to solve the KBE. 

• Note that all quantities are matrices in flavour space now

• We use four-spinors throughout, for Majorana neutrinos one simply has an extra condition



Density Matrix Equation
• We slightly rewrite this

• Analytic solution is impossible… we will perform a gradient expansion 
• First we Fourier transform all quantities in the relative coordinate to go to “Wigner space”

• The convolutions become very ugly, symbolically

• Luckily the system during neutrino decoupling is very close to equilibrium and adiabatic, so 

we only need the leading term…
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• First we Fourier transform all quantities in the relative coordinate to go to “Wigner space”

• The convolutions become very ugly, symbolically

• Luckily the system during neutrino decoupling is very close to equilibrium and adiabatic…



Density Matrix Equation

• We define

• Then add and subtract the KBE from their conjugates to obtain “constrained equations” and 

:kinetic equations”



Density Matrix Equation
• From the kinetic equation we will get the density matrix equation:

• But we want an equation for on-shell distribution functions, while the above are matrices in

spinor space that also exist off-shell. We Lorentz-decompose the propagators

• Now we consider the constrained equation

• We multiply it with different combinations of gamma-matrices and take the trace to obtain 

relations between the Lorentz components
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relations between the Lorentz components

• OK, let’s expand in small parameters 



Density Matrix Equation
• From the kinetic equation we will get the density matrix equation:

• But we want an equation for on-shell distribution functions, while the above are matrices in

spinor space that also exist off-shell. We Lorentz-decompose the propagators

• Now we consider the constrained equation

• We multiply it with different combinations of gamma-matrices and take the trace to obtain 

relations between the Lorentz components

• Let’s plug that into the propagator, and then insert the propagator back into the kinetic 

equation



Density Matrix Equation
• We find

• Comparing this to

• We find

Now we just need to put this on-shell!



Density Matrix Equation
• The neutrino masses and matter potentials are kinematically completely negligible, they only 

matter in the (anti(commutators in  the numerator of the propagator. Hence, we may use the 

pole structure of free spectral function in the relativistic limit for all propagators

• We split all quantities into an equilibrium part and a deviation

• Since the spectral function does not directly depend on the occupation numbers, we can 

neglect the deviation from equilibrium here. Since only two of the two-point functions are 

independent, this means

• The equilibrium pieces must fulfil the KMS relation

• Altogether this yields



Density Matrix Equation

• Plugging this back into the kinetic equation …

• …and integrating over p0

• with

gives

• The expansion of the universe is finally included by interpreting this equation as one in 

conformal time and comoving coordinates



Connecting to Boltzmann
• We found for the gain and loss rates

• Can we somehow connect that to the collision term in the Boltzmann equation?

• We consider the total damping rate

• There can be two types of fermion flow in “setting sun” diagrams, depending on where they come from

• And a generic interaction like



Connecting to Boltzmann
• They read



Connecting to Boltzmann
• Inerting the propagators gives



Connecting to Boltzmann
• And yes, this exactly gives back the Boltzmann integral!

Kinematics Matrix element Quantum statistics



Neff in the Standard Model
• Neff is the “effective number of neutrino species”; parameterises expansion rate 

during BBN and CMB decoupling  

• In the SM it is defined as 

• Neff = 3 in the SM if 
i) primordial plasma is ideal gas, 
ii) neutrinos decouple instantaneously, 
iii) neutrinos decoupled at temperature T >> me

None of this is really true, leading to deviations from Neff = 3

• BSM phenomena also lead to deviations from Neff = 3 (extra light particles, 
modified expansion history, non-standard neutrino interactions…), 
making Neff a powerful probe of BSM physics

• Computed the current state-of-the art value in the SM

• CMB S4 can potentially measure Neff with sub-percent accuracy  

(used by PDG, in CAMB and CLASS codes, major collaborations like DES, DESI…)

Froustey/Pitrou et al 2008.01074
Akita/Yamaguchi al 2005.07047
Bennet et al  2012.02726

https://arxiv.org/abs/2008.01074
https://arxiv.org/abs/2005.07047
https://arxiv.org/abs/2012.02726
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QED Equation of State

QED equation of state can be computed from partition function Z

In practice lnZ is expanded in powers of e

From this, contributions to energy, pressure and entropy care computed



QED Equation of State

At zeroth order one finds ideal gas



QED Equation of State O(e²)

The first correction comes from

Usually the log-dependent term is neglected



QED Equation of State O(e²)[no log]

Neglecting the log term yields



QED Equation of State O(e²)

Adding the log term yields



QED Equation of State O(e³)

The next correction comes from

It reads

with



QED Equation of State O(e³)

The next correction comes from

It reads

with

• This correction was previously neglected
• It turns out to be important



Impact of NLO QED Corrections

• O(e³) correction to equation of state is more important than neutrino oscillations!

• Neff in the SM is found by solving



Impact of NLO QED Corrections
• Neff in the SM is found by solving

• First inclusion of NLO correction to equation of state at O(e³) 
→ is more important than neutrino oscillations!

• Estimate of NLO correction to collision term 
→ is negligible (in contrast to claims in the literature). 

• First inclusion of experimental error in ν-oscillation parameters
→ is subdominant Bennet et al 1911.04504

Bennet et al 2012.02726
Drewes et al 2402.18481

https://arxiv.org/abs/1911.04504
https://arxiv.org/abs/2012.02726
https://arxiv.org/abs/2402.18481


QED Corrections to Collision Term
The following corrections to the collision term were not included

There is controversy about their impact

Cielo et al 2306.05460 , Jackson/laine 2312.07015, Drewes et al 2402.18481

Diagram (d) is IR divergent in the t-channel, requires usage of 
resumed finite temperature photon propagator 

https://arxiv.org/abs/2306.05460
https://arxiv.org/abs/2312.07015
https://arxiv.org/abs/2402.18481


Resummed Photon Propagator

Resummation introduces momentum-dependent photon mass and 
longitudinal photon mode



Resummed Photon Propagator

Impact on Neff is subdominant, but it gives rise to
well-known plasmon process that is relevant for 
White Dwarf coolings



White Dwarf Cooling



Observing WD Cooling

G117-B15A

White Dwarf Luminosity Function 
(WDLF):

Population

Pulsating WDs:
Individual stars



Theory of WD Cooling

Haft/Raffelt/Weiss 1994



Cooling Anomaly

Giannotti/Irastorza/Redondo/Ringwald 1512.08108

• Some WDs appear to be cooling too fast….
• Do they emit LLPs (axions, ALPs, …)?



Impact of B-fields

• Modify plasma processes  γ→ νν

• Enable synchroton radiation e → eνν

• Heating through Ohmic decay

Can internal magnetic fields explain this within the SM? 



Plasma Processes
• γ→ νν possible in dense medium due to modified photon and plasmon 

dispersion relations, roughly characterised by the plasma frequency

• Refractive index (“thermal mass”) is determined by electron density, 
relevant scale is the frequency

• Magnetic fields force electrons on Landau levels, modify refractive index

• Other effects (Schwinger-like pair creation, modification of wave 
function…) are negligible or sub-dominant

cf. e.g. Braaten/Segel 9302213

cf. e.g. Kennet/Melrose astro-ph/9901156

https://arxiv.org/abs/hep-ph/9302213
https://arxiv.org/abs/astro-ph/9901156


Plasma Processes

• For typical WD 
parameters, impact of B 
fields significant…

• …but only at temperature 
where other processes are 
more important



Synchrotron Radiation

• B-fields open up new 
cooling channel e → eνν

• In relevant regime the 
effect grows with B

• For very large B: 
suppression because next  
Landau level becomes 
inaccessible



Comparing Mechanisms

surface cooling
plasmon processes
synchrotron emission

• Synchrotron emission can 
dominate for large temperatures

• Requires comparably large B fields

• Can potentially solve the anomaly 
for 

B ~ 

• But how to generate these fields?

• Non-observation of stronger 
anomaly imposes upper bound

B < 


