

EuCAPT Astroneutrino Theory Workshop 2024 Prague, Czech Republic, Sept. 2024

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Overview about short-baseline anomalies: no clear hint for eV sterile neutrino oscillations

Neutrinos oscillate...

SuperK 1998 atmospheric neutrinos

SNO 2002 solar neutrinos

KamLAND 2006 reactor neutrinos

Big success of 3-neutrino framework

www.nu-fit.org

Big success of 3-neutrino framework

$$|m_3^2 - m_1^2| \approx (2.5 \pm 0.03) \times 10^{-3} \,\mathrm{eV}^2$$

 $m_2^2 - m_1^2 = (7.42 \pm 0.21) \times 10^{-5} \,\mathrm{eV}^2$

 $heta_{12} pprox 33^\circ$ $heta_{23} pprox 45^\circ$ $heta_{13} pprox 9^\circ$

www.nu-fit.org

Sterile neutrinos — right-handed neutrinos — heavy neutral leptons

- fermion, singlet under the SM gauge group
- renormalizable interaction with SM: $\mathscr{L}_{V} = y\overline{L}HN + h \cdot c$.
- appear in many extensions of the SM, models for neutrino mass (seesaw)
- "portal" to a dark sector, e.g. $\mathscr{L}_{dark} = g\phi N^c N + \dots$

• Majorana mass term $\mathscr{L}_M = M_N \overline{N}^c N$ unrelated to Higgs VEV, scale of new physics

Lecture by M. Malinsky on Monday

Sterile neutrino at which mass scale?

Sterile neutrino at which mass scale?

Sterile neutrino at which mass scale?

- Reactor anomaly ($\bar{\nu}_e$ disappearance)
 - predicted vs measured rate
 - distance dependent spectral distortions
- Gallium anomaly (ν_e disappearance)
- ► LSND ($\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)
- MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)

- Reactor anomaly ($\bar{\nu}_e$ disappearance)
 - predicted vs measured rate
 - distance dependent spectral distortions
- Gallium anomaly (ν_e disappearance)
- ► LSND ($\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)
- MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)

- Reactor anomaly ($\bar{\nu}_e$ disappearance)
 - predicted vs measured rate
 - distance dependent spectral distortions
- Gallium anomaly (ν_e disappearance)
- ► LSND ($\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance) ► MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)

• dominated by systematic/theoretical uncertainty

• tension between "predicted" and observed neutrino rates at reactors

• dominated by systematic/theoretical uncertainty

see also Perissé, Onillon, Mougeot, Vivier, Lasserre et al. 2304.14992

• tension between "predicted" and observed neutrino rates at reactors

Berryman, Huber, 1909.09267						
sis	$\chi^2_{3 u}$	$\chi^2_{ m min}$	n_{data}	p	$n\sigma$	
ates	41.4	33.5	40	$2.0 imes 10^{-2}$	2.3	
Rates	39.2	37.0	40	0.34	0.95	
lates	58.1	47.5	40	5.0×10^{-3}	2.8	
ra	184.9	172.2	212	1.8×10^{-3}	3.1	
NEOS	98.9	84.7	84	8.1×10^{-4}	3.3	

- all reactor neutrino spectra predictions (till 2021) were based on electron spectra measured by Schreckenbach et al., 1981-89 @ ILL
- 2021: measurement of ²³⁵U/²³⁹Pu beta-sepctra @ Kurchatov Inst. (KI) Kopeikin, Skorokhvatov, Titov, PRD21 [2103.01684]
 5.4% smaller than ILL → suggests bias in ²³⁵U ILL spectrum

Recent "ad-initio" calculation of reactor neutrino spectrum Perissé, Onillon, Mougeot, Vivier, Lasserre et al. 2304.14992

good agreement with measured neutrino rates

Recent "ad-initio" calculation of reactor neutrino spectrum Perissé, Onillon, Mougeot, Vivier, Lasserre et al. 2304.14992

good agreement with measured neutrino rates

Reactor shape anomaly

relative spectral measurments:

expected, $\Delta m^2 = 7.25 \text{eV}^2$, $\sin^2 2\theta = 0.26$ Observed, 24p, average (125, 250, 500 keV). Dec, 2019. 1.8 Observed, 24p, 500keV. Dec, 2019. Neutrino4: segmented 1.6 -500 keV detector, L = 6.25 to $\Delta m^2 = 7.25 eV^2$, $\sin^2(2\theta) = 0.26$

FIG. 48. Confidence levels of the area around oscillation

Neutrino4 2005.05301

Reactor shape anomaly

STEREO experiment

STEREO Coll. Nature 613 (2023) 257 [2210.07664]

- 6 detector cells
- BD y previous measurements
- no (clear) evidence for sp distortion

Do the hints add up?

- statistical interpretation not straight forward
 Coloma, Huber, Schwetz, 2008.06083
 see also, Feldman, Cousins, 98;
 Agostini, Neumair, 1906.11854;
 Giunti, 2004.07577;
 PROSPECT&STEREO 2006.13147
- constraint from solar neutrinos for large mixing
 Goldhagen, Maltoni, Reichard, TS, 2109.14898

Do the hints add up?

combined significance of sterile neutrino compared to 3ν hypothesis: **1.3** σ (2.1 σ Gauss)

Berryman, Coloma, Huber, TS, Zhou, 2111.12530

- Reactor anomaly ($\bar{\nu}_e$ disappearance)
 - predicted vs measured rate
 - distance dependent spectral distortions
- Gallium anomaly (ν_e disappearance)
- ► LSND $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)
- MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)

- Reactor anomaly ($\bar{\nu}_e$ disappearance) predicted vs measured rate distance dependent spectral distortions
- Gallium anomaly (ν_e disappearance)
- ► LSND ($\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance) ► MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)

The gallium anomaly

- Measurements of gallium solar neutrino experiments GALLEX and SAGE with radioactive ⁵¹Cr or ³⁷Ar sources lead to rates lower than expected ($\sim 2\sigma$) e.g. Giunti, Laveder, 2011
- possible explanation due to eV sterile neutrino oscillations?

electron capture decay: ${}^{51}Cr \rightarrow 51V + \nu_{\rho}$ $E_{\nu} = 750 \,\text{keV} \,(90\%) \,\&\, 430 \,\text{keV} \,(10\%)$

The BEST experiment

$$R_{in} = 0.79 \pm 0.05$$

 $R_{out} = 0.77 \pm 0.05$

V. V. Barinov et al., Phys. Rev. Lett. 128 (2022), no. 23 232501; Phys. Rev. C 105 (2022), no. 6 065502

The gallium anomaly

	$\chi^2_{\rm null}/{ m dof}$	<i>p</i> -value
CS1, BEST	32.1/2	$1.1 \times 10^{-7} (5.3\sigma)$
CS1, all	36.3/6	$2.4 \times 10^{-6} (4.7\sigma)$
CS2, BEST	34.7/2	$2.9 \times 10^{-8} (5.5\sigma)$
CS2, all	38.4/6	$9.4 \times 10^{-7} (4.9\sigma)$

Farzan, TS, 2306.09422 cross sections CS1, CS2 from Haxton et al., 2303.13623

Can it be explained by eV sterile neutrino oscillations?

How to explain?

scenario

comments

Explanations within the Standard Model

increased ⁷¹Ge half-life (Section 2.1 and Ref. [38])

new 71 Ga excited state (Section 2.2)

increased BR(${}^{51}Cr \rightarrow {}^{51}V^*$) (Section 3)

⁷¹Ge extraction efficiency (Section 4) would lead to smaller matrix element for $\nu + {}^{71}$ Ga; but the $\star \star \dot{\pi} \dot{\pi} \dot{\pi} \dot{\pi}$ ⁷¹Ge half-life has been measured many times with different methods in [37], all of which yield consistent results. So it is hard to imagine a bias in these measurements.

Brdar, Gehrlein, Kopp, 2303.05528

our rating

see also Elliott, Gavrin, Haxton [2306.03299]

für Technologie

How to explain?

New physics explanations?

• 20% ν_{ρ} disappearance at the scale of 2m

- difficult to reconcile with vast body of neutrino data many ideas do not work
- Ex.: sterile neutrino coupled to a background field, such that an MSW-like resonance happens at $E_{\nu} \approx 750 \, \mathrm{keV}$ Brdar, Gehrlein, Kopp, 2303.05528

Exotic decoherence effects (three neutrino) Farzan, TS, 2306.09422

How to explain?

New physics explanations?

• 20% ν_{ρ} disappearance at the scale of 2m

- difficult to reconcile with vast body of neutrino data many ideas do not work
- Ex.: sterile neutrino coupled to a background field, such that an MSW-like resonance happens at $E_{
 u} pprox 750\,\mathrm{keV}$ Brdar, Gehrlein, Kopp, 2303.05528

Exotic decoherence effects (three neutrino) Farzan, TS, 2306.09422

- Reactor anomaly ($\bar{\nu}_e$ disappearance)
 - predicted vs measured rate
 - distance dependent spectral distortions
- Gallium anomaly (ν_e disappearance)
- ► LSND $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)
- MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)

- \blacktriangleright Reactor anomaly ($\bar{\nu}_e$ disappearance) predicted vs measured rate distance dependent spectral distortions
- Gallium anomaly (ν_e disappearance)

► LSND $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance})$ • MiniBooNE $(\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)

28

 $91.4 \perp 21.0$ 51.2 ± 11.0 51.4 ± 18.0 6.7 ± 6.0 398.7 ± 28.6 478 79.3 ± 28.6 100.0

FIG. 1: The MiniBooNE neutrino mode E_{ν}^{∞} distributions, corresponding to the total 12.84×10^{20} POT data, for ν_e CCQE data (points with statistical errors) and background (histogram with systematic errors). The dashed curve shows the best fit to the neutrino-mode data assuming standard twoneutrino oscillations.

MiniBooNE 2020

systematic uncertainties.) The dashed curves show the best fits to the neutrino-mode and antineutrino-mode data assuming standard two-neutrino oscillations. Combined neutrino+antineutrino

excess: 638.0±132.8 events (4.8σ)

curs at $\Delta m^2 = 0.040 \text{ eV}^2$ and $\sin^2 2\theta = 0.894$ with a $\chi^2/ndf = 35.2/28$, corresponding to a probability of Fig. 3 compares the L/E_{ν}^{QE} distributions for the Mini-In Schwetz - Prague Sept 2024 BooNE data excesses in neutrino mode and antineutrino best fit described below. The MiniBooNE excess of

Correlation between appearance and disappearance probabilities

appearance

$$P_{\mu e} = \sin^2 2\theta_{\mu e} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

disappearance ($\alpha = e, \mu$)

$$P_{\alpha\alpha} = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$$

 $u_{\mu}
ightarrow
u_{e}$ app. signal requires also signal in both, u_{e} and u_{μ} disappearance (appearance mixing angle quadratically suppressed)

$$\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$$

$$\sin^2 2\theta_{\alpha\alpha} = 4|U_{\alpha4}|^2(1-|U_{\alpha4}|^2)$$

Strong tension btw appearance and disappearance

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$$

sterile oscillation explanation of LSND/MiniB robustly disfavoured

non-observation of oscillations in ν_{μ} disappearance (CDHS, MiniB, MINOS+, SK, IceCube)

Other BSM explanations?

- 3-neutrinos and CPT violation
- Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, TS 03 • 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky et al., 04, 06; Gouvea, Grossman 06
- mass varying v Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile vs in extra dim Paes, Pakvasa, Weiler 05; Doring, Pas, Sicking, Weiler, 18
- decaying sterile neutrino Palomares-Riuz, Pascoli, TS 05; Gninenko 09, 10; Bertuzzo, Jana, Machado, Zukanovich, 18; Ballett, Pascoli, Ross-Lonergan, 18; Fischer, Hernandez, TS, 19; Dentler, Esteban, Kopp, Machado, 19; deGouvea, Peres, Prakash, Stenico, 19; Abdallah, Gandhi, Roy, 20
- energy dependent quantum decoherence Farzan, TS, Smirnov 07; Bakhti, Farzan, TS, 15, Farzan TS, 23
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile v with energy dependent mass or mixing TS 07
- sterile v with non-standard interactions Akhmedov, TS 10; Conrad, Karagiorgi, Shaevitz, 12; Liao, Marfatia, Whisnant 18

incomplete and outdated list:

Other BSM explanations?

- 3-neutrinos and CPT violation Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, TS 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky et al., 04, 06; Gouvea, Grossman 06
- mass varying v Kaplan, Nelson, Weiner 04; Zurek 04; Barger Me
- shortcuts of sterile vs in extra dim Paes, Pakyase
- decaying sterile neutrino Palomare Bertuzzo, Jana, Mache Dentler, Esteban
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile v with energy dependent mass or mixing TS 07
- sterile v with non-standard interactions Akhmedov, TS 10; Conrad, Karagiorgi, Shaevitz, 12; Liao, Marfatia, Whisnant 18

incomplete and outdated list:

many of them excluded by some data as, Sicking, Weiler, 18 anett, Pascoli, Ross-Lonergan, 18; Fischer, Hernandez, TS, 19; 19; deGouvea, Peres, Prakash, Stenico, 19; Abdallah, Gandhi, Roy, 20 • energy dependen antum decoherence Farzan, TS, Smirnov 07; Bakhti, Farzan, TS, 15, Farzan TS, 23

MiniBooNE and a decaying sterile neutrino

Palomares, Pascoli, TS, hep-ph/0505216; Gninenko, 0902.3802, 1009.5536; Bertuzzo, Jana, Machado, Zukanovich, 1807.09877; Ballett, Pascoli, Ross-Lonergan, 1808.2915; Arguelles, Hostert, Tsai, 1812.08768; Fischer, Hernandez, TS, 1909.09561; Dentler, Esteban, Kopp, Machado, 1911.01427; deGouvea, Peres, Prakash, Stenico, 1911.01447; Brdar, Fischer, Smirnov, 2007.14411; Abdallah, Gandhi, Roy, 2010.06159; Abdullahi, Hostert, Pascoli, 2007.11813;...

- sterile neutrino N with $m_N \sim \text{keV}$ to ~500 MeV
- produce N either by mixing or by up-scattering
- decay:
 - $N \rightarrow \phi \, \nu_{\scriptscriptstyle
 ho}$ with standard neutrino interaction in detector

• exciting new physics / rich phenomenology / predict signatures in existing (near detectors) and/or upcoming experiments (e.g., Fermilab SBN, DUNE, HK, IceC)

• electromagn. decay inside MB detector $N \rightarrow \nu \gamma / \nu e^{\pm} / \nu \pi^0 / \dots$ (no LSND)

eV sterile neutrinos are severely constrained by cosmology

Two effects of neutrinos in cosmology:

sum of neutrino masses $\sum m_{\nu} < 0.12 \,\mathrm{eV}$

effective number of neutrino species

 $N_{\rm eff} = 2.99 \pm 0.17$

eV sterile neutrinos are severely constrained by cosmology

Two effects of neutrinos in cosmology:

• sum of neutrino masses $\sum m_{\nu} < 0.12 \, \mathrm{eV}$

effective number of neutrino species

 $N_{\rm eff} = 2.99 \pm 0.17$

consider a partially thermalized eV-scale neutrino state:

• $N_{\text{eff}} = 3 + \Delta N_{\text{eff}}$ • $\sum m_{\nu} \approx \sum_{i=1}^{3} m_i + \Delta N_{\text{eff}} m_4$

Summary

Anomaly	Status	Explanation?	
Reactor rate and shape	fading away (< 2 0) systematics dominated	nuclear physics	
Gallium / BEST	very significant (~5ơ)	sterile oscillations in strong tension w reactor, solar, cosmology difficult to explain exotic decoherence (?)	
LSND	significant (<mark>3.8</mark> 0) ~25 yr anomaly	sterile oscillations in strong tensions we disappearance data. cosmoloc	
MiniBooNE	very significant (<mark>4.8</mark> 0) relies on background estimate	difficult to explain HNL decay / exotic decoherence (?)	

Sι

ummary		Thank you for you.
Anomaly	Status	Explanation?
Reactor rate and shape	fading away (< <mark>2</mark> 0) systematics dominated	nuclear physics
Gallium / BEST	very significant (~5ơ)	sterile oscillations in strong tension w reactor, solar, cosmology difficult to explain exotic decoherence (?)
LSND	significant (<mark>3.8ơ</mark>) ~25 yr anomaly	sterile oscillations in strong tension w disappearance data, cosmology
MiniBooNE	very significant (<mark>4.8</mark> 0) relies on background estimate	difficult to explain HNL decay / exotic decoherence (?)

