

Topics in Leptogenesis

Frank Deppisch f.deppisch@ucl.ac.uk

University College London

EuCAPT Astroneutrino Theory Workshop | Prague | 16-27/9/2024

Lecture 1

- Baryon Asymmetry
- Big Bang Nucleosynthesis
- Cosmic Microwave Background
- Sakharov Conditions
- Sphalerons

F

Big Bang Nucleosynthesis

University College London

Cosmic Microwave Bckg.

Lecture 2

- Seesaw and Leptogenesis
- CP Asymmetry
- Out-of-equilibrium Decays and Inverse Decays
- Boltzmann Equations
- Fast Sphaleron and SM Interactions

Baryon Asymmetry

- Dynamic generation of baryon asymmetry requires (Sakharov '66)
 - Baryon number violation
 - C and CP Violation
 - Out-of-equilibrium dynamics
- Standard Model
 - Baryon number violated at quantum level (Sphalerons)
 - C and CP violated but effect too small

 $\frac{\mathrm{Im}\,\mathrm{det}\left(m_{u}m_{u}^{+}m_{d}m_{d}^{+}\right)}{v^{12}} = J\frac{m_{t}^{4}m_{c}^{2}m_{b}^{4}m_{s}^{2}}{v^{12}} \approx 10^{-19}$

 Electroweak phase transition out-ofequilibrium if first order but requires

$$m_h < 60 - 80 \text{ GeV}$$

Sphalerons

- Baryon and Lepton numbers accidental, classical symmetries in the Standard Model
- Violated at the quantum level (t' Hooft '76)

$$\partial_{\mu}J^{\mu}_{B} = \partial_{\mu}J^{\mu}_{L} = \frac{g^{2}}{32\pi^{2}}F_{\mu\nu}\tilde{F}^{\mu\nu}$$

- B + L violated
- B L remains conserved
- Sphaleron transitions in equilibrium $\frac{\Gamma_{Sph}}{H} > 1$ for

 $\Lambda_{EW} \approx 10^2 {\rm GeV} < T < 10^{12} ~{\rm GeV}$

Leptogenesis

Decays of heavy Majorana neutrinos violating L and CP (Fukugita, Yanagida '86)

• CP asymmetry

$$\epsilon_1 = \frac{\Gamma(N_1 \to LH^+) - \Gamma\left(N_1 \to \overline{L}H\right)}{\Gamma(N_1 \to LH^+) + \Gamma\left(N_1 \to \overline{L}H\right)} \approx \frac{3}{8\pi} \frac{\mathrm{Im}\left[(Y_\nu Y_\nu^+)_{1k}^2\right]}{(Y_\nu Y_\nu^+)_{11}} \frac{M_1}{M_k}$$

Competition with washout processes eradicating L asymmetry

$$M_N \gtrsim 10^8 \left(\frac{\eta_B}{5 \times 10^{-11}}\right) \left(\frac{0.06 \text{eV}}{m_3}\right) \text{GeV}$$

Conversion to baryon asymmetry via sphaleron processes

ocesses $\eta_B \approx \eta_L$

Frank Deppisch | Leptogenesis | 23/9/2024

University College London

Leptogenesis

- Finite Temperature Effects (Giudice, Notari, Raidal, Riotto, Strumia '04)
 - Corrections to sterile neutrino production rate, CP asymmetry and washout rates

Leptogenesis

- Flavour Effects (Pilaftsis '04, Endoh, Morozumi, Xiong '04, Barbieri, Creminelli, Strumia, Tetradis '00)
 - Charged leptons not all equilibrated below 10¹² GeV
 - Flavour composition of N_1 , N_2 , N_3 decays
 - Usual assumption: $m_{N_1} \ll m_{N_2} \ll m_{N_3}$ and N_1 decays washing out $N_{2,3}$ asymmetries not always applicable
 - Flavour-covariant formalism as consistent quantum statistical framework beyond classical Boltzmann (Dev, Millington, Teresi '14)

Leptogenesis - Resonant

 Dominance of self-energy loop for small mass difference between heavy neutrinos (Pilaftsis '97)

- **CP** asymmetry can be O(1) for $\Delta M_N \approx \Gamma_N$
- Viable leptogenesis for neutrino masses as light as $M_N \approx 100 \text{ GeV}$

Leptogenesis - Resonant

- Seesaw I mechanism with TeV scale heavy neutrinos
 - Standard Seesaw with small Yukawa couplings

$$Y_{\nu} \approx 10^{-6} \sqrt{M_N/\text{TeV}}$$

• "Bent" Seesaw I mechanisms (e.g. Inverse Seesaw)

$$\begin{pmatrix} 0 & Y_{\nu}\langle H \rangle & 0 \\ Y_{\nu}\langle H \rangle & \mu & M \\ 0 & M & \mu \end{pmatrix}$$

• LNV in
$$0\nu\beta\beta$$
 suppressed by $\frac{\Delta m_N}{m_N}$

• LNV in resonant *N* production suppressed by $\frac{\Delta m_N}{\Gamma_N} \approx \frac{\mu}{\Gamma_N}$

Leptogenesis – Oscillations

- Sterile neutrinos with small hierarchical Yukawa couplings (Akhmedov, Rubakov, Smirnov '98)
 - One neutrino not in equilibrium before critical sphaleron T
 - CP and flavor violating oscillations between sterile neutrinos generate asymmetry
 - Viable mechanism for $m_N \approx 1 100 \text{ GeV}$
 - Does not rely on Majorana nature of sterile neutrinos

Dirac vs Majorana

- Origin of neutrino masses beyond the Standard Model
- Two possibilities to define neutrino mass

Dirac mass analogous to other fermions but with ${m_{\nu}}/{\Lambda_{EW}} \approx 10^{-12}$ couplings to Higgs

- Majorana mass, using only a left-handed neutrino
- → Lepton Number Violation

Neutrino Oscillations

Three Flavour Mixing

Three mixing angles

- Solar θ_{12}
- Atmospheric θ_{23}
- Reactor θ_{13}
- Two mass splittings
 - Δm_{12}^2 , Δm_{13}^2

• CP-phase δ_{CP}

University College London

0νββ

Half-life $a \approx 100 \text{ MeV}$ $T_{1/2}^{-1} = |m_{\beta\beta}|^2 G^{0\nu} |M^{0\nu}|^2$ Particle Physics $\mathcal{A}_{\mu\nu}^{lep} = \frac{1}{4} \sum_{i=1}^{5} U_{ei}^{2} \gamma_{\mu} (1+\gamma_{5}) \frac{\not(m+m_{\nu_{i}})}{q^{2}-m_{\nu_{i}}^{2}} \gamma_{\nu} (1-\gamma_{5}) \approx \frac{\gamma_{\mu} (1+\gamma_{5})\gamma_{\nu}}{4q^{2}} \sum_{i=1}^{5} U_{ei}^{2} m_{\nu_{i}}$ $m_{\beta\beta}$ Atomic Physics N.Z=0,0 • Leptonic phase space $G^{0\nu}$ Nuclear Physics N,Z=e,e Nuclear transition matrix element $M^{0\nu}$ $T_{1/2}^{-1} \propto \frac{|m_{\beta\beta}|^2}{q^4} G_F^4 Q^5 \left[\frac{10^{25} \text{yr}}{T_{1/2}} \approx \left(\frac{|m_{\beta\beta}|}{eV}\right)^2 \right] Q \approx 2-4 \text{ MeV}$ z-2 z+1 z-1 17 / 29

Frank Deppisch | Leptogenesis | 23/9/2024

0νββ

Liniversity College London

Direct Searches

Direct Searches

Direct Searches and $0\nu\beta\beta$

Baryon Asymmetry Generation and Washout

- Classic Example: High-Scale Leptogenesis
 - Generation via heavy neutrino decays
 - Competition with LNV washout processes
 - Conversion to baryon asymmetry
 - EW sphaleron processes at $T \approx 100 \text{ GeV}$
 - Observed asymmetry

$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.20 \pm 0.15) \times 10^{-10}$$

- Other possible scenarios
 - For us only important:
 (B L) asymmetry generated above LHC scale

H 7

Baryon Asymmetry Generation and Washout

- Classic Example: High-Scale Leptogenesis
 - Generation via heavy neutrino decays
 - Competition with LNV washout processes
 - Conversion to baryon asymmetry
 - EW sphaleron processes at $T \approx 100 \text{ GeV}$
 - Observed asymmetry

$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.20 \pm 0.15) \times 10^{-10}$$

What if we observe lepton number violating processes in 0νββ?

Frank Deppisch | Leptogenesis | 23/9/2024

Washout via $0\nu\beta\beta$ operators

- Analogous analysis using LNV effective operators of mass dimensions 5, 7, 9, 11
 - 129 Operators (Babu, Leung '01, de Gouvea, Jenkins '08)
 - Examples

 $\mathcal{O}_{5} = (L^{i}L^{j})H^{k}H^{l}\epsilon_{ik}\epsilon_{jl},$ $\mathcal{O}_{7} = (L^{i}d^{c})(\bar{e^{c}u^{c}})H^{j}\epsilon_{ij},$ $\mathcal{O}_{9} = (L^{i}L^{j})(\bar{Q}_{i}\bar{u^{c}})(\bar{Q}_{j}\bar{u^{c}}),$ $\mathcal{O}_{11} = (L^{i}L^{j})(Q_{k}d^{c})(Q_{l}d^{c})H_{m}\bar{H}_{i}\epsilon_{jk}\epsilon_{lm},$

Matching to 0vββ operators

$$m_e \epsilon_5 = \frac{g^2 v^2}{\Lambda_5}, \ \frac{G_F \epsilon_7}{\sqrt{2}} = \frac{g^3 v}{2\Lambda_7^3}, \ \frac{G_F^2 \epsilon_{\{9,11\}}}{2m_p} = \{\frac{g^4}{\Lambda_9^5}, \frac{g^6 v^2}{\Lambda_{11}^7}\}.$$
$$T_{1/2} = 2.1 \times 10^{25} \text{ y} \cdot \left(\Lambda_D / \Lambda_D^0\right)^{2d-8}$$

$$\begin{array}{c|cccc} \mathcal{O}_D & \lambda_D^0 \ [\text{GeV}] & \Lambda_D^0 \ [\text{GeV}] \\ \mathcal{O}_5 & 9.2 \times 10^{10} & 9.1 \times 10^{13} \\ \mathcal{O}_7 & 1.2 \times 10^2 & 2.6 \times 10^4 \\ \mathcal{O}_9 & 4.3 \times 10^1 & 2.1 \times 10^3 \\ \mathcal{O}_{11} & 7.8 \times 10^1 & 1.0 \times 10^3 \end{array}$$

Washout via $0\nu\beta\beta$ operators

 Boltzmann equation including washout of *D*-dim effective operator

$$n_{\gamma}HT\frac{d\eta_L}{dT} = c_D \frac{T^{2D-4}}{\Lambda_D^{2D-8}} \eta_L$$

$$c_{\{5,7,9,11\}} = \{\frac{8}{\pi^5}, \frac{27}{2\pi^7}, \frac{3.2 \times 10^4}{\pi^9}, \frac{3.9 \times 10^5}{\pi^{13}}\}$$

Effective washout if

$$\frac{\Gamma_W}{H} \equiv \frac{c_D}{n_\gamma H} \frac{T^{2D-4}}{\Lambda_D^{2D-8}} = c'_D \frac{\Lambda_{\rm Pl}}{\Lambda_D} \left(\frac{T}{\Lambda_D}\right)^{2D-9} \gtrsim 1$$

$$\Lambda_D \left(\frac{\Lambda_D}{c'_D \Lambda_{\rm Pl}} \right)^{\frac{1}{2D-9}} \equiv \lambda_D \lesssim T \lesssim \Lambda_D$$

Better: Solve Boltzmann such that initial asymmetry is washed out at the EW scale

$$\hat{\lambda}_D \approx \left[(2D-9) \ln \left(\frac{10^{-2}}{\eta_B^{\text{obs}}} \right) \lambda_D^{2D-9} + v^{2D-9} \right]^{\frac{1}{2D-9}},$$

$$\begin{array}{c|cccc} \mathcal{O}_D & \lambda_D^0 \ [\text{GeV}] & \Lambda_D^0 \ [\text{GeV}] \\ \hline \mathcal{O}_5 & 9.2 \times 10^{10} & 9.1 \times 10^{13} \\ \mathcal{O}_7 & 1.2 \times 10^2 & 2.6 \times 10^4 \\ \mathcal{O}_9 & 4.3 \times 10^1 & 2.1 \times 10^3 \\ \mathcal{O}_{11} & 7.8 \times 10^1 & 1.0 \times 10^3 \end{array}$$

Frank Deppisch | Leptogenesis | 23/9/2024

Falsifying Baryogenesis

- Temperature ranges of strong equilibration
 - Assumes observation of corresponding process!
- Observation of LNV
 - gives information at what temperatures operators are in equilibrium
 - can falsify high-scale baryogenesis scenarios
 FFD, Harz, Hirsch, Phys.Rev.Lett. 112 (2014) 221601,
 FFD, Harz, Hirsch, Huang, Päs,
 Phys.Rev.D 92 (2015) 3, 036005

Falsifying Baryogenesis

- LNV not directly visible but different kinematic spectrum
- Discovery at NA62 within 1.7σ of SM expectation
- Survey of operators and processes (Fridell, Graf, Harz, Hati '24)

University College London

Falsifying Baryogenesis

- LNV not directly visible but different kinematic spectrum
- Discovery at NA62 within 1.7σ of SM expectation
- Survey of operators and processes (Fridell, Graf, Harz, Hati '24)

$$\mathscr{B}_{16-22}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.0^{+3.3}_{-2.9}) \times 10^{-11}$$

Conclusion

- Addressing two issues of the SM in Seesaw model
 - Majorana neutrino mass models
 - Baryogenesis via Leptogenesis
- High-scale leptogenesis as natural consequence

$$M_N \gtrsim 10^8 \left(\frac{\eta_B}{5 \times 10^{-11}}\right) \left(\frac{0.06 \text{eV}}{m_3}\right) \text{GeV}$$

Embarrassment of riches

- Viable solutions over broad parameter space 1 GeV $< m_N < \Lambda_{GUT}$
- Many extensions and embeddings
 - E.g., Type–II and III Seesaw, Gauge extensions $(U(1)_{B-L}, Left-Right symmetry, SO(10))$, Supersymmetry
- Bottom-up approach
 - Experimental data \rightarrow Constrained model-landscape
- Important information for model selection, e.g.,
 - Observation of $0\nu\beta\beta$
 - Observation of LNV @ LHC