

Neutrino Non-Standard Interactions (NSI)

Bhupal Dev

(bdev@wustl.edu)

Washington University in St. Louis

EuCAPT Astroneutrino Theory Workshop 2024 Prague, Czech Republic

September 19, 2024

Outline

• Lecture 1: NSI Basics

- Why care about NSI?
- Review of SI and matter effect
- Wolfenstein parametrization of (vector) NSI
- NSI in propagation (NC), production and detection (CC)
- Current status and future prospects of NSI constraints
- Possible hint of NSI in oscillation data?

Outline

• Lecture 1: NSI Basics

- Why care about NSI?
- Review of SI and matter effect
- Wolfenstein parametrization of (vector) NSI
- NSI in propagation (NC), production and detection (CC)
- Current status and future prospects of NSI constraints
- Possible hint of NSI in oscillation data?
- Lecture 2: NSI Model Building and Phenomenology
- Lecture 3: Beyond ε Scalar NSI, NSSI, Neutrino-DM interactions, ...

References

- $\mathcal{O}(500)$ papers on NSI.
- Apologies if your favorite paper(s) not cited here.
- Reviews:
 - T. Ohlsson, Rept. Prog. Phys. 76, 044201 (2013) [arXiv:1209.2710].
 - O. G. Miranda and H. Nunokawa, New J. Phys. **17**, no.9, 095002 (2015) [arXiv:1505.06254].
 - Y. Farzan and M. Tortola, Front. in Phys. 6, 10 (2018) [arXiv:1710.09360].
 - P. S. B. Dev et al., SciPost Phys. Proc. 2, 001 (2019) [arXiv:1907.00991].
 - S. K. Agarwalla et al., Snowmass LOI (2022).

Why Non-Standard Interactions?

Neutrino Oscillations \Longrightarrow Nonzero Neutrino Mass \Longrightarrow BSM Physics

Why Non-Standard Interactions?

$Neutrino \ Oscillations \Longrightarrow Nonzero \ Neutrino \ Mass \Longrightarrow BSM \ Physics$

- Must introduce new fermions, scalars and/or gauge bosons messengers of neutrino mass physics.
- New couplings involving neutrinos inevitably lead to NSI.
- Potentially observable effects in neutrino production, propagation, and/or detection.
- Relevant for all kinds of neutrinos (accelerator, reactor, atmospheric, solar, supernova, astrophysical, cosmic).

Why Non-Standard Interactions?

Neutrino Oscillations \Longrightarrow Nonzero Neutrino Mass \Longrightarrow BSM Physics

- Must introduce new fermions, scalars and/or gauge bosons messengers of neutrino mass physics.
- New couplings involving neutrinos inevitably lead to NSI.
- Potentially observable effects in neutrino production, propagation, and/or detection.
- Relevant for all kinds of neutrinos (accelerator, reactor, atmospheric, solar, supernova, astrophysical, cosmic).
- Complementary to direct search for new physics at the LHC.
- At the very least, could serve as a foil for the standard 3-neutrino oscillation scheme.
- Better understanding of NSI is crucial for correct interpretation of oscillation data.
- Potential hints of NSI in recent T2K/NOvA data.

Standard Neutrino Interactions with Matter

$$\mathcal{H}_{Z} = \frac{G_{F}}{\sqrt{2}} J_{Z}^{\mu} J_{Z\mu}^{\dagger}, \text{ where } J_{Z}^{\mu} = \sum_{i=\ell,\nu_{\ell},u,d} \overline{\psi}_{i} \gamma^{\mu} \left[I_{i}^{3} (1-\gamma_{5}) - 2Q_{i} \sin^{2} \theta_{W} \right] \psi_{i},$$

$$\mathcal{H}_W = \frac{G_F}{\sqrt{2}} J_W^{\mu} J_{W_{\mu}}^{\dagger}, \text{ where } J_W^{\mu} = \bar{e} \gamma^{\mu} (1 - \gamma_5) \nu_e \,.$$

Type of reaction	Matter potential
V_Z^n	$\mp G_F N_n / \sqrt{2}$
V_Z^p	$\pm G_F(1-4\sin^2 heta_W)N_p/\sqrt{2}$
V^e_Z	$\mp G_F (1 - 4\sin^2 \theta_W) N_e / \sqrt{2}$
V_W^e	$\pm \sqrt{2}G_F N_e$

[For a derivation, see e.g., J. Linder, hep-ph/0504264]

Type of reaction	Matter potential
V_Z^n	$\mp G_F N_n / \sqrt{2}$
V^p_Z	$\pm G_F(1-4\sin^2 heta_W)N_p/\sqrt{2}$
V^e_Z	$\mp G_F (1 - 4 \sin^2 \theta_W) N_e / \sqrt{2}$
V_W^e	$\pm \sqrt{2}G_F N_e$

[For a derivation, see e.g., J. Linder, hep-ph/0504264]

- Upper (Lower) sign is for neutrino (antineutrino).
- In an electrically neutral medium $(N_e = N_p), V_Z^e + V_Z^p = 0.$
- V_Z^n is diagonal in neutrino flavor, and gives an overall phase shift, which is of no physical significance in oscillations.
- Effective neutrino matter potential induced by Earth:

$$V_{\rm CC} = V_W^e = \sqrt{2}G_F N_e \simeq 3.8 \times 10^{-14} \text{ eV} \left(\frac{\rho}{\mathrm{gm/cm^3}}\right) \left(\frac{Y_e}{0.5}\right) \,.$$

Oscillation Probability

• Time evolution governed by Schrödinger equation:

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \left[\frac{MM^{\dagger}}{2E} + V(t)\right] \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix},$$

where E is the neutrino energy, $M = U \operatorname{diag}(m_1, m_2, m_3) U^T$ is the neutrino mass matrix and $V = \operatorname{diag}(V_{CC}, 0, 0)$.

Oscillation Probability

• Time evolution governed by Schrödinger equation:

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \left[\frac{MM^{\dagger}}{2E} + V(t)\right] \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix},$$

where E is the neutrino energy, $M = U \operatorname{diag}(m_1, m_2, m_3) U^T$ is the neutrino mass matrix and $V = \operatorname{diag}(V_{CC}, 0, 0)$.

• Probability of oscillation over a length L (in the 2-flavor limit):

$$\begin{split} P(\nu_{\alpha} \to \nu_{\beta}) &= \left| \langle \nu_{\beta} | e^{-iHL} | \nu_{\alpha} \rangle \right|^2 \simeq \sin^2 2\theta_M \sin^2 \left(\frac{\Delta m_M^2 L}{4E} \right) \,, \\ \text{where} \quad \tan 2\theta_M &= \frac{\Delta m^2 \sin 2\theta}{\Delta m^2 \cos 2\theta - A} \,, \\ \quad \Delta m_M^2 &= \sqrt{(\Delta m^2 \cos 2\theta - A)^2 + (\Delta m^2 \sin 2\theta)^2} \,, \\ A &= 2EV_{\text{CC}} \,. \end{split}$$

Neutral Current NSI

$$\mathcal{L}_{\mathrm{NSI}}^{\mathrm{NC}} = -2\sqrt{2}G_F \sum_{f,X,\alpha,\beta} \varepsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\bar{f}\gamma_{\mu}P_Xf) \, \bigg|,$$

with X = L, R, and $f \in \{e, u, d\}$. [L. Wolfenstein, PRD '78)]

Neutral Current NSI

$$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F \sum_{f,X,\alpha,\beta} \varepsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Xf) \, ,$$

with X = L, R, and $f \in \{e, u, d\}$. [L. Wolfenstein, PRD '78)]

• Only vector part is relevant (axial-vector part is spin-dependent):

$$\begin{split} \varepsilon_{\alpha\beta} &= \sum_{f \in \{e,u,d\}} \frac{N_f}{N_e} \varepsilon_{\alpha\beta}^{fV} = \varepsilon_{\alpha\beta}^{eV} + \frac{N_p}{N_e} (2\varepsilon_{\alpha\beta}^{uV} + \varepsilon_{\alpha\beta}^{dV}) + \frac{N_n}{N_e} (\varepsilon_{\alpha\beta}^{uV} + 2\varepsilon_{\alpha\beta}^{dV}) \\ &= \varepsilon_{\alpha\beta}^{eV} + (2 + Y_n) \varepsilon_{\alpha\beta}^{uV} + (1 + 2Y_n) \varepsilon_{\alpha\beta}^{dV} \\ \text{with } \varepsilon_{\alpha\beta}^{fV} &= \varepsilon_{\alpha\beta}^{fL} + \varepsilon_{\alpha\beta}^{fR} \text{ and } Y_n = N_n/N_e \simeq 1 \text{ for Earth.} \end{split}$$

Neutral Current NSI

$$\mathcal{L}_{\mathrm{NSI}}^{\mathrm{NC}} = -2\sqrt{2}G_F \sum_{f,X,\alpha,\beta} \varepsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Xf)$$

with X = L, R, and $f \in \{e, u, d\}$. [L. Wolfenstein, PRD '78)]

• Only vector part is relevant (axial-vector part is spin-dependent):

$$\begin{split} \varepsilon_{\alpha\beta} &= \sum_{f \in \{e,u,d\}} \frac{N_f}{N_e} \varepsilon_{\alpha\beta}^{fV} = \varepsilon_{\alpha\beta}^{eV} + \frac{N_p}{N_e} (2\varepsilon_{\alpha\beta}^{uV} + \varepsilon_{\alpha\beta}^{dV}) + \frac{N_n}{N_e} (\varepsilon_{\alpha\beta}^{uV} + 2\varepsilon_{\alpha\beta}^{dV}) \\ &= \varepsilon_{\alpha\beta}^{eV} + (2 + Y_n) \varepsilon_{\alpha\beta}^{uV} + (1 + 2Y_n) \varepsilon_{\alpha\beta}^{dV} \\ \text{with } \varepsilon_{\alpha\beta}^{fV} &= \varepsilon_{\alpha\beta}^{fL} + \varepsilon_{\alpha\beta}^{fR} \text{ and } Y_n = N_n/N_e \simeq 1 \text{ for Earth.} \end{split}$$

• Leads to extra matter effect in propagation:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \langle \nu_{\beta} | e^{-i(H+V_{\rm NSI})L} | \nu_{\alpha} \rangle \right|^{2} ,$$

where $V_{\rm NSI} = \sqrt{2}G_{F}N_{e} \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^{*} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^{*} & \varepsilon_{\mu\tau}^{*} & \varepsilon_{\tau\tau} \end{pmatrix}$

What does NSI do?

[figure adapted from T. Ohlsson]

Induces non-standard oscillations during propagation

$$i\frac{d}{dL}\begin{pmatrix}\nu_{e}\\\nu_{\tau}\end{pmatrix} = \begin{bmatrix}\frac{1}{2E}U\begin{pmatrix}0&0\\0&\Delta m^{2}\end{pmatrix}U^{\dagger} + A\begin{pmatrix}1+\epsilon_{ee}&\epsilon_{e\tau}\\\epsilon_{e\tau}&\epsilon_{\tau\tau}\end{pmatrix}\end{bmatrix}\begin{pmatrix}\nu_{e}\\\nu_{\tau}\end{pmatrix}$$

$$P(\nu_{e}\to\nu_{\tau}) = \sin^{2}2\theta_{M}\sin^{2}\left(\frac{\Delta m_{M}^{2}L}{4E}\right)$$

Induces non-standard oscillations during propagation

$$i\frac{d}{dL}\begin{pmatrix}\nu_{e}\\\nu_{\tau}\end{pmatrix} = \left[\frac{1}{2E}U\begin{pmatrix}0&0\\0&\Delta m^{2}\end{pmatrix}U^{\dagger} + A\begin{pmatrix}1+\epsilon_{ee}&\epsilon_{e\tau}\\\epsilon_{e\tau}&\epsilon_{\tau\tau}\end{pmatrix}\right]\begin{pmatrix}\nu_{e}\\\nu_{\tau}\end{pmatrix}$$
$$P(\nu_{e} \to \nu_{\tau}) = \sin^{2}2\theta_{M}\sin^{2}\left(\frac{\Delta m_{M}^{2}L}{4E}\right)$$
$$\left(\frac{\Delta m_{M}^{2}}{2EA}\right)^{2} \equiv \left(\frac{\Delta m^{2}}{2EA}\cos 2\theta - (1+\epsilon_{ee}-\epsilon_{\tau\tau})\right)^{2} + \left(\frac{\Delta m^{2}}{2EA}\sin 2\theta + 2\epsilon_{e\tau}\right)^{2}$$
$$\sin 2\theta_{M} \equiv \frac{\Delta m^{2}\sin 2\theta + 4EA\epsilon_{e\tau}}{\Delta m_{M}^{2}}$$

Modifies standard oscillation probabilities

Can obscure mass-ordering determination

[Capozzi, Chatterjee, Palazzo 1908.06992 (PRL)]

Can degrade octant and δ_{CP} discovery potential

Can degrade octant and δ_{CP} discovery potential

Charged Current NSI

[Y. Grossman, hep-ph/9507344]

$$\mathcal{L}_{\mathrm{NSI}}^{\mathrm{CC}} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{ff'X} (\bar{\nu}_{\alpha}\gamma^{\mu} P_L \ell_{\beta}) (\bar{f}' \gamma_{\mu} P_X f)$$

• Flavor mixture states at source and detection.

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \langle \nu_{\beta}^{\mathrm{d}} | e^{-iHL} | \nu_{\alpha}^{\mathrm{s}} \rangle \right|^{2}$$

• Source NSI (e.g. in pion decay):

$$|\nu_{\alpha}^{\rm s}
angle = |\nu_{\alpha}
angle + \sum_{\beta=e,\mu,\tau} \varepsilon_{\alpha\beta}^{\rm s} |\nu_{\beta}
angle, \quad \text{e.g. } \pi^+ \xrightarrow{\varepsilon_{e\mu}^{\rm s}} \mu^+ \nu_e$$

• Detection NSI (e.g. in neutrino-nucleon scattering):

$$\langle \nu_{\alpha}^{\mathbf{d}} | = \langle \nu_{\alpha} | + \sum_{\beta = e, \mu, \tau} \varepsilon_{\alpha\beta}^{\mathbf{d}} \langle \nu_{\beta} | , \quad \text{e.g. } \nu_{\tau} n \xrightarrow{\varepsilon_{e\tau}^{\mathbf{d}}} e^{-} p$$

Interesting Near-Detector Physics

Zero-distance effect

[Langacker, London (PRD '88)]

Interesting Near-Detector Physics

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \begin{vmatrix} u^{s} & (U_{M})_{\delta i} & (U^{\dagger}_{M})_{i\omega} & (U^{\dagger})^{\dagger}_{\omega\beta} G_{F} \\ \nu^{s} & \nu^{s} & \nu^{s} & \nu^{s} \\ \nu^{M} & \nu^{M} & \nu^{M} & \nu^{M} & \nu^{d} \\ \hline & & & & & & & \\ weak-eigenstate & & & & & \\ (figure from T. Ohlsson] \\ weak-eigenstate & & & & & \\ (figure from T. Ohlsson] \\ P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{i} [U^{s}U_{M}]_{\alpha i} \exp\left(i\frac{(\Delta m^{2}_{M})_{i1}L}{4E}\right) [U^{d}U_{M}]_{i\beta}^{\dagger} \right|^{2} \\ \hline \\ \hline \\ \mathbf{Zero-distance effect} & & & \\ (Langacker, London (PRD `88)) \\ \text{the 2-flavor case,} \end{aligned}$$

$$\frac{\Delta m^2 L}{4E} \to 0 \Longrightarrow P(\nu_e \to \nu_\mu) \to \left(\epsilon_{e\mu}^s - \epsilon_{e\mu}^d\right)^2$$

• Can in principle be probed with a near detector close to the source (e.g., ESS ν SB), assuming that the neutrino fluxes at source are well-known.

CC+NC NSI can make things worse!

Current Constraints* on NC NSI

[Farzan, Tortola 1710.09360]

	90% C.L. range	origin
		NSI with quarks
ϵ_{ee}^{dL}	[-0.3, 0.3]	CHARM
ϵ_{ee}^{dR}	[-0.6, 0.5]	CHARM
$\epsilon^{dV}_{\mu\mu}$	$\left[-0.042, 0.042\right]$	atmospheric + accelerator
$\epsilon^{uV}_{\mu\mu}$	$\left[-0.044, 0.044\right]$	atmospheric + accelerator
$\epsilon^{dA}_{\mu\mu}$	$\left[-0.072, 0.057\right]$	atmospheric + accelerator
$\epsilon^{uA}_{\mu\mu}$	[-0.094, 0.14]	atmospheric + accelerator
$\epsilon_{\tau\tau}^{dV}$	[-0.075, 0.33]	oscillation data $+$ COHERENT
$\epsilon^{uV}_{\tau\tau}$	[-0.09, 0.38]	oscillation data + $COHERENT$
$\epsilon^{qV}_{\tau\tau}$	$\left[-0.037, 0.037\right]$	atmospheric
		NSI with electrons
ϵ^{eL}_{ee}	$\left[-0.021, 0.052 ight]$	solar + KamLAND
ϵ_{ee}^{eR}	$\left[-0.07, 0.08 ight]$	TEXONO
$\epsilon^{eL}_{\mu\mu},\epsilon^{eR}_{\mu\mu}$	$\left[-0.03, 0.03\right]$	reactor + accelerator
$\epsilon^{eL}_{\tau\tau}$	$\left[-0.12, 0.06\right]$	solar + KamLAND
$\epsilon^{eR}_{\tau\tau}$	[-0.98, 0.23] [-0.25, 0.43]	$ \begin{array}{l} {\rm solar} + {\rm KamLAND} \ {\rm and} \ {\rm Borexino} \\ {\rm reactor} + {\rm accelerator} \end{array} \\ \end{array} \\$
$\epsilon^{eV}_{\tau\tau}$	[-0.11, 0.11]	atmospheric

Current Constraints* on NC NSI

[Farzan, Tortola 1710.09360]

	90% C.L. range	origin		90% C.L. range	origin
		NSI with quarks		NSI w	ith quarks
$ \begin{array}{c} \epsilon_{ee}^{dL} \\ \epsilon_{ee}^{dR} \\ \epsilon_{e\mu}^{dV} \\ \epsilon_{\mu\mu}^{V} \\ \epsilon_{\mu\mu}^{u\mu} \\ \epsilon_{\mu\mu}^{dA} \\ \epsilon_{\mu\mu}^{uA} \\ \epsilon_{\tau\tau}^{uA} \\ \epsilon_{\tau\tau}^{eV} \\ \epsilon_{\tau\tau}^{eV} \end{array} $	$\begin{array}{c} [-0.3, 0.3] \\ [-0.6, 0.5] \\ [-0.042, 0.042] \\ [-0.044, 0.044] \\ [-0.072, 0.057] \\ [-0.094, 0.14] \\ [-0.075, 0.33] \\ [-0.09, 0.38] \\ [-0.037, 0.037] \end{array}$	CHARM CHARM atmospheric + accelerator atmospheric + accelerator atmospheric + accelerator oscillation data + COHERENT oscillation data + COHERENT atmospheric	$ \begin{array}{c} & \\ \epsilon_{e\mu}^{qL} \\ \epsilon_{e\mu}^{qR} \\ \epsilon_{e\mu}^{qR} \\ \epsilon_{e\mu}^{dV} \\ \epsilon_{e\mu}^{dV} \\ \epsilon_{e\tau}^{qR} \\ \epsilon_{e\tau}^{qR} \\ \epsilon_{e\tau}^{qR} \\ \epsilon_{\mu\tau}^{qR} \\ \epsilon_{\mu\tau}^{qR} \\ \epsilon_{qV}^{qR} \end{array} $	$\begin{bmatrix} -0.023, 0.023 \\ [-0.036, 0.036] \\ [-0.073, 0.044] \\ [-0.07, 0.04] \\ [-0.15, 0.13] \\ [-0.15, 0.13] \\ [-0.13, 0.12] \\ [-0.023, 0.023] \\ [-0.036, 0.036] \\ [-0.036, 0.036] \end{bmatrix}$	accelerator accelerator oscillation data + COHERENT oscillation data + COHERENT CHARM oscillation data + COHERENT accelerator accelerator accelerator
		NSI with electrons	$\epsilon^{q}_{\mu\tau}$ $\epsilon^{qA}_{\mu\tau}$	[-0.006, 0.0054] [-0.039, 0.039]	IceCube atmospheric + accelerator
ϵ_{ee}^{eL}	[-0.021, 0.052]	solar + KamLAND		NSI wi	th electrons
$\begin{array}{c} \epsilon_{ee} \\ \epsilon_{\mu\mu}^{eL}, \epsilon_{\mu\mu}^{eR} \\ \epsilon_{\tau\tau}^{eL} \\ \epsilon_{\tau\tau}^{eR} \\ \epsilon_{\tau\tau}^{eV} \end{array}$	[-0.07, 0.08] $[-0.03, 0.03]$ $[-0.12, 0.06]$ $[-0.98, 0.23]$ $[-0.25, 0.43]$ $[-0.11, 0.11]$	reactor + accelerator solar + KamLAND solar + KamLAND and Borexino reactor + accelerator atmospheric	$ \begin{array}{c} \epsilon^{eL}_{e\mu}, \epsilon^{eR}_{e\mu} \\ \epsilon^{eL}_{e\tau} \\ \epsilon^{eR}_{e\tau} \\ \epsilon^{eR}_{e\tau} \\ \epsilon^{eR}_{\mu\tau}, \epsilon^{eR}_{\mu\tau} \\ \epsilon^{eV}_{\mu\tau} \end{array} $	$\begin{matrix} [-0.13, 0.13] \\ [-0.33, 0.33] \\ [-0.28, -0.05] & [0.05, 0.28] \\ [-0.19, 0.19] \\ [-0.10, 0.10] \\ [-0.018, 0.016] \end{matrix}$	reactor + accelerator reactor + accelerator reactor + accelerator TEXONO reactor + accelerator IceCube

(Flavor-diagonal)

(Flavor-changing)

*Conditions apply (one at a time, some constraints do not apply to light mediators)

Current Constraints* on CC NSI

[Farzan, Tortola 1710.09360]

	90% C.L. range	origin
		semileptonic NSI
ϵ_{ee}^{udP}	$\left[-0.015, 0.015 ight]$	Daya Bay
$\epsilon^{udL}_{e\mu}$	$\left[-0.026, 0.026 ight]$	NOMAD
$\epsilon^{udR}_{e\mu}$	$\left[-0.037, 0.037 ight]$	NOMAD
$\epsilon_{\tau e}^{udL}$	$\left[-0.087, 0.087 ight]$	NOMAD
$\epsilon_{\tau e}^{udR}$	$\left[-0.12, 0.12\right]$	NOMAD
$\epsilon_{\tau\mu}^{udL}$	$\left[-0.013, 0.013 ight]$	NOMAD
$\epsilon^{udR}_{\tau\mu}$	$\left[-0.018, 0.018\right]$	NOMAD
		purely leptonic NSI
$\epsilon^{\mu eL}_{\alpha e}, \epsilon^{\mu eR}_{\alpha e}$	[-0.025, 0.025]	KARMEN
$\epsilon^{\mu eL}_{\alpha\beta}, \epsilon^{\mu eR}_{\alpha\beta}$	$\left[-0.030, 0.030\right]$	kinematic G_F

Current Constraints* on CC NSI

[Farzan, Tortola 1710.09360]

	90% C.L. range	origin
		semileptonic NSI
ϵ_{ee}^{udP}	$\left[-0.015, 0.015 ight]$	Daya Bay
$\epsilon^{udL}_{e\mu}$	$\left[-0.026, 0.026 ight]$	NOMAD
$\epsilon^{udR}_{e\mu}$	$\left[-0.037, 0.037 ight]$	NOMAD
$\epsilon_{ au e}^{udL}$	$\left[-0.087, 0.087 ight]$	NOMAD
$\epsilon_{\tau e}^{udR}$	$\left[-0.12, 0.12\right]$	NOMAD
$\epsilon_{\tau\mu}^{udL}$	$\left[-0.013, 0.013\right]$	NOMAD
$\epsilon^{udR}_{\tau\mu}$	$\left[-0.018, 0.018\right]$	NOMAD
		purely leptonic NSI
$\epsilon^{\mu eL}_{\alpha e}, \epsilon^{\mu eR}_{\alpha e}$	$\left[-0.025, 0.025\right]$	KARMEN
$\epsilon^{\mu eL}_{\alpha\beta}, \epsilon^{\mu eR}_{\alpha\beta}$	$\left[-0.030, 0.030\right]$	kinematic G_F

- From model-building perspective, getting 'large' CC NSI is more difficult than NC NSI.
- In some models (with purely leptonic NSI), CC and NC NSI are correlated by Fierz transformation.
- We will mostly focus on NC NSI (unless otherwise specified).

Global Fit

Future Prospects at DUNE

- Long baseline, huge statistics, intense & well-characterized beam.
- Excellent sensitivity to matter NSI.

[de Gouvêa, Kelly 1511.05562; Coloma 1511.06357; Blennow et al. 1606.08851; Liao, Marfatia,

Whisnant 1612.01443; Chatterjee et al 1809.09313; Han et al 1910.03272]

Improved DUNE Sensitivity to NSI

[Chatterjee, BD, Machado 2106.04597]

Dependence on $\delta_{\rm CP}$

[Chatterjee, BD, Machado 2106.04597]

Breaking Degeneracies

[Chatterjee, BD, Machado 2106.04597]

Improved $\delta_{\rm CP}$ Sensitivity

[Chatterjee, BD, Machado 2106.04597;

see also De Romeri, Fernandez-Martinez, Sorel, 1607.00293]

Hint of NSI?

[Chatterjee, Palazzo 2008.04161 (PRL); see also Denton, Gehrlein, Pestes 2008.01110 (PRL)]

Hint of NSI?

[Chatterjee, Palazzo 2008.04161 (PRL); see also Denton, Gehrlein, Pestes 2008.01110 (PRL)]

T2K-NOvA anomaly persists in 2024 data!

But not conclusive yet!

[Chatterjee, Palazzo 2409.10599]

Strong constraints from IceCube and KM3NeT

KM3NeT/ORCA6 preliminary, 433 kton-yr

Outline

• Lecture 1: NSI Basics

• Lecture 2: NSI Model Building and Phenomenology

- Main challenge
- EFT approach
- UV-completion
- Heavy mediators
- Light mediators
- Loop-induced NSI

• Lecture 3: Beyond ε – Scalar NSI, NSSI, Neutrino-DM interactions, ...

NSI Model Building

• In the standard parametrization, NSI is a non-renormalizable, dimension-6 operator:

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Xf)$$
$$\boxed{\varepsilon_{\alpha\beta} \sim \frac{g_{\Lambda}^2 m_W^2}{\Lambda^2}}$$

- Two regimes to get 'observable' NSI, i.e. $\varepsilon_{\alpha\beta} \sim \mathcal{O}(1)$:
 - Heavy mediator: $g_{\Lambda} \sim \mathcal{O}(1)$ and $\Lambda \gtrsim m_W$.
 - Light mediator: $g_{\Lambda} \ll 1$ and $\Lambda \ll m_W$ such that $g_{\Lambda}^2/\Lambda^2 \sim \mathcal{O}(G_F)$.

NSI Model Building

• In the standard parametrization, NSI is a non-renormalizable, dimension-6 operator:

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Xf)$$
$$\boxed{\varepsilon_{\alpha\beta} \sim \frac{g_{\Lambda}^2 m_W^2}{\Lambda^2}}$$

- Two regimes to get 'observable' NSI, i.e. $\varepsilon_{\alpha\beta} \sim \mathcal{O}(1)$:
 - Heavy mediator: $g_{\Lambda} \sim \mathcal{O}(1)$ and $\Lambda \gtrsim m_W$.
 - Light mediator: $g_{\Lambda} \ll 1$ and $\Lambda \ll m_W$ such that $g_{\Lambda}^2/\Lambda^2 \sim \mathcal{O}(G_F)$.
- EFT approach is valid in *both* cases as long as $q^2 \ll \Lambda^2$.
- Always true for matter NSI, since $q^2 \rightarrow 0$ for coherent forward scattering.

Main Challenge

- The NSI operator by itself is not $SU(2)_L$ gauge-invariant.
- Restoring gauge invariance in a renormalizable, UV-complete model will in general impose stringent constraints on NSI.

[Gavela, Hernandez, Ota, Winter 0809.3451; Biggio, Blennow, Fernandez-Martinez 0907.0097]

Main Challenge

- The NSI operator by itself is not $SU(2)_L$ gauge-invariant.
- Restoring gauge invariance in a renormalizable, UV-complete model will in general impose stringent constraints on NSI.

[Gavela, Hernandez, Ota, Winter 0809.3451; Biggio, Blennow, Fernandez-Martinez 0907.0097]

• Consider the leptonic NSI operator of the form

$$\frac{1}{\Lambda^2} (\bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta}) (\bar{\ell}_{\gamma} \gamma_{\mu} P_L \ell_{\delta}).$$

• In a UV-complete theory, it must be part of the more general form

$$\frac{1}{\Lambda^2} (\bar{L}_{\alpha} \gamma^{\mu} L_{\beta}) (\bar{L}_{\gamma} \gamma_{\mu} L_{\delta}).$$

- Severely constrained by rare LFV processes like $\mu \to 3e$, viz. BR $(\mu \to 3e) < 10^{-12}$ implies $\varepsilon_{e\mu}^e \lesssim 10^{-6}$.
- Similar constraints for quark NSI from atomic parity violation, CKM unitarity, etc. [Antusch, Baumann, Fernandez-Martinez 0807.1003]

Why do we care?

• Are there realistic UV-complete models having observable NSI?

- Important in order to understand which sort of new physics the neutrino experimental program is actually probing when model-independent NSI constraints are presented.
- Complementarity of neutrino oscillation and scattering experiments with traditional low- and high-energy experiments searching for new physics.

Why do we care?

• Are there realistic UV-complete models having observable NSI?

- Important in order to understand which sort of new physics the neutrino experimental program is actually probing when model-independent NSI constraints are presented.
- Complementarity of neutrino oscillation and scattering experiments with traditional low- and high-energy experiments searching for new physics.
- After all, neutrinos are the first (and so far only) ones to give concrete laboratory evidence of new physics.
- Can we use NSI to probe neutrino mass physics?
- Oscillation physics is insensitive to absolute neutrino mass, but not necessarily to the origin of neutrino mass.

Neutrino Mass Mechanism

- Simplest solution: Add right-handed neutrinos N.
- Gives Dirac Yukawa term $Y_D \overline{L} H N$ +H.c.
- After EWSB, gives Dirac neutrino mass $M_D = Y_D v$.
- But $m_{\nu} \lesssim 0.1 \text{ eV}$ implies $Y_D \lesssim 10^{-12}$. Possible but ugly!
- Perhaps something (beautiful) beyond the SM Higgs mechanism?

Seesaw Mechanism

- One possibility is to break the accidental B L symmetry of the SM by higher-dimensional operators.
- Lowest-order is dimension-5 Weinberg operator: [Weinberg, PRL '79]

$$\mathcal{O}_1 = \frac{1}{\Lambda} L^i L^j H^k H^l \epsilon_{ik} \epsilon_{jl}.$$

• Only 3 tree-level realizations: [Ma, hep-ph/9805219 (PRL)]

NSI in Type-I Seesaw

- Related to **non-unitarity** in the neutrino mixing matrix. [Blennow, Coloma, Fernandez-Martinez, Hernandez-Garcia, Lopez-Pavon 1609.08637]
- The seesaw mass matrix $\mathcal{M}_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix}$ is diagonalized by a $(3+n) \times (3+n)$ unitarity matrix $\mathcal{U} = \begin{pmatrix} U & R \\ S & V \end{pmatrix}$.
- $U \simeq (1 \eta) U_{\text{PMNS}}$ with $\eta = R R^{\dagger}/2$ and $R \simeq M_D M_N^{-1}$.
- $\varepsilon_{\alpha\beta}$ are identical to $\eta_{\alpha\beta}$ (up to a factor of 2 for the off-diagonals).
- Can also be derived from 'first principles' using the canonical diagonalization of the kinetic term. [Broncano, Gavela, Jenkins hep-ph/0210271]
- Stringent constraints on non-unitarity from EWPD, LFV, CKM unitarity, etc. [Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon, hep-ph/0607020; Antusch, Fischer 1407.6607]; Blennow, Fernández-Martínez, Hernández-García, López-Pavón, Marcano, Naredo-Tuero, 2306.01040]

Global Analysis of NSI with 2 RHNs

[Blennow, Fernández-Martínez, Hernández-García, López-Pavón, Marcano, Naredo-Tuero, 2306.01040]

Global Analysis of NSI with 3 RHNs

[Blennow, Fernández-Martínez, Hernández-García, López-Pavón, Marcano, Naredo-Tuero, 2306.01040] Mild preference for non-zero NSI at 10^{-4} level (in *ee* and $\tau\tau$) for NO.

NSI in Type-II Seesaw

• SM+ a scalar triplet
$$\Delta = \begin{pmatrix} \frac{\Delta^+}{\sqrt{2}} & \Delta^{++} \\ \Delta^0 & -\frac{\Delta^+}{\sqrt{2}} \end{pmatrix}$$
 [Schechter, Valle '80]
$$\mathcal{L}_Y = Y_{\alpha\beta} \left[\Delta^0 \overline{\nu_{\alpha R}^C} \nu_{\beta L} - \frac{1}{\sqrt{2}} \Delta^+ \left(\overline{\ell_{\alpha R}^C} \nu_{\beta L} + \overline{\nu_{\alpha R}^C} \ell_{\beta L} \right) - \Delta^{++} \overline{\ell_{\alpha R}^C} \ell_{\beta L} \right] + \text{h.c.}$$

• Integrating out the triplet scalars (with mass M_{Δ}),

$$\mathcal{L}_{\nu}^{m} = \frac{Y_{\alpha\beta} \lambda_{\phi} v^{2}}{M_{\Delta}^{2}} \left(\overline{\nu_{\alpha R}^{C}} \nu_{\beta L} \right) = -\frac{1}{2} (m_{\nu})_{\alpha\beta} \overline{\nu_{\alpha R}^{C}} \nu_{\beta L}, \quad \nu_{\beta}$$

$$\mathcal{L}_{\text{NSI}} = \frac{Y_{\sigma\beta} Y_{\alpha\rho}^{\dagger}}{M_{\Delta}^{2}} (\overline{\nu_{\alpha L}} \gamma_{\mu} \nu_{\beta L}) (\overline{\ell_{\rho L}} \gamma^{\mu} \ell_{\sigma L}), \quad \ell_{\sigma}$$

• Leads to the NSI parameters

$$\varepsilon_{\alpha\beta}^{\rho\sigma} = -\frac{M_{\Delta}^2}{8\sqrt{2}\,G_F\,v^4\,\lambda_{\phi}^2}\,\,(m_{\nu})_{\sigma\beta}\,\,(m_{\nu}^{\dagger})_{\alpha\rho},$$

NSI in Type-II Seesaw

Strongly constrained by cLFV, neutrino mass and lab constraints on Δ^+ .

Decay	Constraint on	Bound
$\mu^- ightarrow e^- e^+ e^-$	$ arepsilon_{ee}^{e\mu} $	$3.5 imes 10^{-7}$
$\tau^- ightarrow e^- e^+ e^-$	$ \varepsilon_{ee}^{e au} $	1.4×10^{-4}
$\tau^- \to \mu^- \mu^+ \mu^-$	$ arepsilon_{\mu\mu}^{\mu au} $	1.2×10^{-4}
$\tau^- ightarrow e^- \mu^+ e^-$	$ \varepsilon^{e au}_{e\mu} $	$1.0 imes 10^{-4}$
$\tau^- ightarrow \mu^- e^+ \mu^-$	$ arepsilon_{\mu e}^{\mu au} $	$1.0 imes 10^{-4}$
$\tau^- ightarrow e^- \mu^+ \mu^-$	$ arepsilon_{\mu\mu}^{e au} $	1.0×10^{-4}
$\tau^- ightarrow e^- e^+ \mu^-$	$ \varepsilon^{e au}_{\mu e} $	9.9×10^{-5}
$\mu^- ightarrow e^- \gamma$	$\left \sum_{\alpha} \varepsilon^{e\mu}_{\alpha\alpha}\right $	$2.6 imes 10^{-5}$
$\tau^- ightarrow e^- \gamma$	$\left \sum_{\alpha} \varepsilon^{e\tau}_{\alpha\alpha}\right $	1.8×10^{-2}
$\tau^- ightarrow \mu^- \gamma$	$\left \sum_{\alpha} \varepsilon^{\mu \tau}_{\alpha \alpha}\right $	$2.0 imes 10^{-4}$
$\mu^+ e^- \to \mu^- e^+$	$ arepsilon_{\mu e}^{\mu e} $	$3.0 imes 10^{-3}$

[Huitu, Karkkainen, Maalampi, Vihonen 1711.02971]

Radiative Neutrino Mass Models

- Attractive alternative to tree-level seesaw.
- In-buit loop (and chiral) suppression factors naturally allows for lower new physics scale.

[Zee (PLB '80; NPB '86); Babu (PLB '88); Cai, Herrero-Garcia, Schmidt, Vicente, Volkas 1706.08524]

NSI in Radiative Neutrino Models

An Example: Zee Model

An Example: Zee Model

(small)

(small)

$$\varepsilon_{\alpha\beta} \equiv \varepsilon_{\alpha\beta}^{(h^+)} + \varepsilon_{\alpha\beta}^{(H^+)} = \frac{1}{4\sqrt{2}G_F} Y_{\alpha e} Y_{\beta e}^{\star} \left(\frac{\sin^2 \varphi}{m_{h^+}^2} + \frac{\cos^2 \varphi}{m_{H^+}^2} \right)$$

[Babu, BD, Jana, Thapa 1907.09498]

[Babu, BD, Jana, Thapa 1907.09498]

[Babu, BD, Jana, Thapa 1907.09498]

[Glashow (PR '60)]

Glashow resonance $E_{\nu} = \frac{m_W^2}{2m_e} = 6.3 \text{ PeV}$ Observed by IceCube [Nature **591**, 220 (2021)]

A New Probe of NSI using UHE Neutrinos

[Babu, BD, Jana, Sui 1908.02779; Babu, BD, Jana 2202.06975]

NSI with Light Mediators

- Still lacking a comprehensive UV-complete exploration.
- Possible to avoid cLFV constraints with flavored light mediators.
- An explicit example with $(B L)_3$ flavored light Z'. [Babu, Friedland, Machado, Mocioiu 1705.01822]
- Large diagonal $\varepsilon_{\tau\tau}$ up to $\sim 50\%$.
- How about large off-diagonal NSI?
- In general, for light Z',

$$\varepsilon^f_{\alpha\beta} = \frac{g_f(g_\nu)_{\alpha\beta}}{2\sqrt{2}G_F m_{Z'}^2}$$

• An explicit example violating the Schwartz inequality, i.e. $|\varepsilon_{\alpha\beta}^{f}| > |\varepsilon_{\alpha\alpha}^{f}\varepsilon_{\beta\beta}^{f}|^{1/2}$, with $U(1)' \times Z_2$. [Farzan 1912.09408]

LHC Probe of NSI

[Babu,Gonçalves, Jana, Machado 2003.03383]

Loop-induced NSI

_

	$\psi = e, u, d$ $\psi = e, u, d$ $\mathcal{L}_{\mathrm{NSI}} = \left(\epsilon^{\triangleright}_{lpha angle} ight.$	$egin{aligned} & Z_\mu & & \ & & & \ & & & \ \end{pmatrix} & & & & \ & & \ & & \ \end{pmatrix} & & \ & & \ & \$	ψ_{int}	ν_{α} ν_{α} $\nu_{\mu}P_{L}\nu_{\beta}, (\psi$ $\epsilon_{\alpha\beta}^{\Box} = \frac{1}{16\pi^{2}}$	$\psi = e, u, d$ $y_{\psi} = e, u, d$ $\psi' = e, u, d$ $= e_L, e_R, u$ $\frac{\sqrt{2}y_{\alpha}^* y_{\beta} y_{\alpha}}{4m_{\phi}^2 G_F}$	$ \begin{array}{c} \phi \\ \phi \\ \mu_L, \ u_R, \cdots) \\ b ^2 \\ \end{array} $	ν_{β}
	ϵ_e^F	$\epsilon_e^{\triangleright}$	$\epsilon_n^{\triangleright}$	$\epsilon_p^{\triangleright}$	ϵ_e^{\Box}	ϵ_n^{\Box}	ϵ_p^{\Box}
model A	$\mathcal{O}(10^{-3})$	$\mathcal{O}(10^{-5})$	$O(10^{-4})$	$\mathcal{O}(10^{-5})$	$\mathcal{O}(10^{-3})$	0	0
model B	0	$\mathcal{O}(10^{-1})$	$\mathcal{O}(1)$	$\mathcal{O}(10^{-1})$	0	0	0
model C	0	0	0	0	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$

[Bischer, Rodejohann, Xu 1807.08102]

Outline

- Lecture 1: NSI Basics
- Lecture 2: NSI Model Building and Phenomenology
- Lecture 3: Beyond ε
 - Scalar NSI
 - Neutrino Self Interactions
 - Neutrino-DM interactions