

Neutrino Non-Standard Interactions (NSI)

Bhupal Dev

(bdev@wustl.edu)

Washington University in St. Louis

EuCAPT Astroneutrino Theory Workshop 2024 Prague, Czech Republic

September 19, 2024

Outline

Lecture 1: NSI Basics

- Why care about NSI?
- Review of SI and matter effect
- Wolfenstein parametrization of (vector) NSI
- NSI in propagation (NC), production and detection (CC)
- Current status and future prospects of NSI constraints
- Possible hint of NSI in oscillation data?

Outline

Lecture 1: NSI Basics

- Why care about NSI?
- Review of SI and matter effect
- Wolfenstein parametrization of (vector) NSI
- NSI in propagation (NC), production and detection (CC)
- Current status and future prospects of NSI constraints
- Possible hint of NSI in oscillation data?
- Lecture 2: NSI Model Building and Phenomenology
- Lecture 3: Beyond *ε* Scalar NSI, NSSI, Neutrino-DM interactions, ...

References

- \bullet $\mathcal{O}(500)$ papers on NSI.
- Apologies if your favorite paper(s) not cited here.
- Reviews:
	- T. Ohlsson, Rept. Prog. Phys. **76**, 044201 (2013) [arXiv[:1209.2710\]](https://arxiv.org/abs/1209.2710).
	- \bullet O. G. Miranda and H. Nunokawa, New J. Phys. 17, no.9, 095002 (2015) [arXiv[:1505.06254\]](https://arxiv.org/abs/1505.06254).
	- Y. Farzan and M. Tortola, Front. in Phys. 6, 10 (2018) [arXiv[:1710.09360\]](https://arxiv.org/abs/1710.09360).
	- P. S. B. Dev *et al.*, SciPost Phys. Proc. 2, 001 (2019) [arXiv[:1907.00991\]](https://arxiv.org/abs/1907.00991).
	- S. K. Agarwalla *et al.*, [Snowmass LOI](https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF3_NF1-CF7_CF0-TF11_TF8_Peter_Denton-023.pdf) (2022).

Why Non-Standard Interactions?

Neutrino Oscillations \Rightarrow Nonzero Neutrino Mass \Rightarrow BSM Physics

Why Non-Standard Interactions?

Neutrino Oscillations \implies Nonzero Neutrino Mass \implies BSM Physics

- \bullet Must introduce new fermions, scalars and/or gauge bosons messengers of neutrino mass physics.
- New couplings involving neutrinos **inevitably lead to NSI**.
- Potentially observable effects in neutrino production, propagation, and/or detection.
- Relevant for all kinds of neutrinos (accelerator, reactor, atmospheric, solar, supernova, astrophysical, cosmic).

Neutrino Oscillations \implies Nonzero Neutrino Mass \implies BSM Physics

- \bullet Must introduce new fermions, scalars and/or gauge bosons messengers of neutrino mass physics.
- New couplings involving neutrinos **inevitably lead to NSI**.
- Potentially observable effects in neutrino production, propagation, and/or detection.
- Relevant for all kinds of neutrinos (accelerator, reactor, atmospheric, solar, supernova, astrophysical, cosmic).
- Complementary to direct search for new physics at the LHC.
- At the very least, could serve as a foil for the standard 3-neutrino oscillation scheme.
- Better understanding of NSI is crucial for correct interpretation of oscillation data.
- Potential hints of NSI in recent T2K/NO*ν*A data.

Standard Neutrino Interactions with Matter

$$
\mathcal{H}_Z = \frac{G_F}{\sqrt{2}} J_Z^{\mu} J_{Z_{\mu}}^{\dagger}, \text{ where } J_Z^{\mu} = \sum_{i=\ell,\nu_{\ell},u,d} \overline{\psi}_i \gamma^{\mu} \left[I_i^3 (1-\gamma_5) - 2Q_i \sin^2 \theta_W \right] \psi_i,
$$

$$
\mathcal{H}_W = \frac{G_F}{\sqrt{2}} J_W^{\mu} J_{W_{\mu}}^{\dagger}, \text{where } J_W^{\mu} = \bar{e} \gamma^{\mu} (1 - \gamma_5) \nu_e \,.
$$

 \overline{f}

[For a derivation, see e.g., J. Linder, [hep-ph/0504264\]](https://arxiv.org/pdf/hep-ph/0504264)

[For a derivation, see e.g., J. Linder, [hep-ph/0504264\]](https://arxiv.org/pdf/hep-ph/0504264)

- Upper (Lower) sign is for neutrino (antineutrino).
- In an electrically neutral medium ($N_e = N_p$), $V_Z^e + V_Z^p = 0$.
- V_Z^n is diagonal in neutrino flavor, and gives an overall phase shift, which is of no physical significance in oscillations.
- Effective neutrino matter potential induced by Earth:

$$
V_{\rm CC} = V_W^e = \sqrt{2} G_F N_e \simeq 3.8 \times 10^{-14} \, \text{eV} \left(\frac{\rho}{\text{gm/cm}^3} \right) \left(\frac{Y_e}{0.5} \right) \, .
$$

Oscillation Probability

• Time evolution governed by Schrödinger equation:

$$
i\frac{d}{dt}\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} MM^\dagger \\ 2E \end{bmatrix} + V(t) \begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix},
$$

where *E* is the neutrino energy, $M = U$ diag $(m_1, m_2, m_3)U^T$ is the neutrino mass matrix and $V = diag(V_{\rm CC}, 0, 0)$.

Oscillation Probability

• Time evolution governed by Schrödinger equation:

$$
i\frac{d}{dt}\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} MM^\dagger \\ 2E \end{bmatrix} + V(t) \begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix},
$$

where *E* is the neutrino energy, $M = U$ diag $(m_1, m_2, m_3)U^T$ is the neutrino mass matrix and $V = diag(V_{\text{CC}}, 0, 0)$.

• Probability of oscillation over a length *L* (in the 2-flavor limit):

$$
P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta} | e^{-iHL} | \nu_{\alpha} \rangle|^2 \simeq \sin^2 2\theta_M \sin^2 \left(\frac{\Delta m_M^2 L}{4E} \right),
$$

where $\tan 2\theta_M = \frac{\Delta m^2 \sin 2\theta}{\Delta m^2 \cos 2\theta - A},$
 $\Delta m_M^2 = \sqrt{(\Delta m^2 \cos 2\theta - A)^2 + (\Delta m^2 \sin 2\theta)^2},$
 $A = 2EV_{\text{CC}}.$

Neutral Current NSI

$$
\mathcal{L}_{\mathrm{NSI}}^{\mathrm{NC}} = -2\sqrt{2}G_F \sum_{f, X, \alpha, \beta} \varepsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta}) (\bar{f} \gamma_{\mu} P_X f) \Bigg|,
$$

with $X = L, R$, and $f \in \{e, u, d\}$. [L. Wolfenstein, [PRD '78\)\]](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.17.2369)

Neutral Current NSI

$$
\mathcal{L}^{\rm NC}_{\rm NSI} = -2\sqrt{2}G_F \sum_{f, X, \alpha, \beta} \varepsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta}) (\bar{f} \gamma_{\mu} P_X f) ,
$$

with $X = L, R$, and $f \in \{e, u, d\}$. [L. Wolfenstein, [PRD '78\)\]](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.17.2369)

Only vector part is relevant (axial-vector part is spin-dependent):

$$
\varepsilon_{\alpha\beta} = \sum_{f \in \{e, u, d\}} \frac{N_f}{N_e} \varepsilon_{\alpha\beta}^{IV} = \varepsilon_{\alpha\beta}^{eV} + \frac{N_p}{N_e} (2\varepsilon_{\alpha\beta}^{uV} + \varepsilon_{\alpha\beta}^{dV}) + \frac{N_n}{N_e} (\varepsilon_{\alpha\beta}^{uV} + 2\varepsilon_{\alpha\beta}^{dV})
$$

$$
= \varepsilon_{\alpha\beta}^{eV} + (2 + Y_n) \varepsilon_{\alpha\beta}^{uV} + (1 + 2Y_n) \varepsilon_{\alpha\beta}^{dV}
$$
with $\varepsilon_{\alpha\beta}^{fV} = \varepsilon_{\alpha\beta}^{fL} + \varepsilon_{\alpha\beta}^{fR}$ and $Y_n = N_n/N_e \simeq 1$ for Earth.

Neutral Current NSI

$$
\mathcal{L}^{\rm NC}_{\rm NSI} = -2\sqrt{2}G_F \sum_{f, X, \alpha, \beta} \varepsilon_{\alpha\beta}^{fX} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Xf),
$$

with $X = L, R$, and $f \in \{e, u, d\}$. [L. Wolfenstein, [PRD '78\)\]](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.17.2369)

Only vector part is relevant (axial-vector part is spin-dependent):

$$
\varepsilon_{\alpha\beta} = \sum_{f \in \{e, u, d\}} \frac{N_f}{N_e} \varepsilon_{\alpha\beta}^{fV} = \varepsilon_{\alpha\beta}^{eV} + \frac{N_p}{N_e} (2\varepsilon_{\alpha\beta}^{uV} + \varepsilon_{\alpha\beta}^{dV}) + \frac{N_n}{N_e} (\varepsilon_{\alpha\beta}^{uV} + 2\varepsilon_{\alpha\beta}^{dV})
$$

$$
= \varepsilon_{\alpha\beta}^{eV} + (2 + Y_n) \varepsilon_{\alpha\beta}^{uV} + (1 + 2Y_n) \varepsilon_{\alpha\beta}^{dV}
$$
with $\varepsilon_{\alpha\beta}^{fV} = \varepsilon_{\alpha\beta}^{fL} + \varepsilon_{\alpha\beta}^{fR}$ and $Y_n = N_n/N_e \simeq 1$ for Earth.

Leads to extra matter effect in propagation:

$$
P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta} | e^{-i(H + V_{\text{NSI}})L} | \nu_{\alpha} \rangle|^2,
$$

where $V_{\text{NSI}} = \sqrt{2} G_F N_e \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}^2$

What does NSI do?

[figure adapted from T. Ohlsson]

Induces non-standard oscillations during propagation

$$
i\frac{d}{dL}\begin{pmatrix} \nu_e \\ \nu_\tau \end{pmatrix} = \left[\frac{1}{2E}U\begin{pmatrix} 0 & 0 \\ 0 & \Delta m^2 \end{pmatrix}U^{\dagger} + A\begin{pmatrix} 1+\epsilon_{ee} & \epsilon_{e\tau} \\ \epsilon_{e\tau} & \epsilon_{\tau\tau} \end{pmatrix}\right]\begin{pmatrix} \nu_e \\ \nu_\tau \end{pmatrix}
$$

$$
P(\nu_e \to \nu_\tau) = \sin^2 2\theta_M \sin^2 \left(\frac{\Delta m_M^2 L}{4E}\right)
$$

Induces non-standard oscillations during propagation

$$
i\frac{d}{dL}\begin{pmatrix} \nu_e \\ \nu_\tau \end{pmatrix} = \left[\frac{1}{2E}U\begin{pmatrix} 0 & 0 \\ 0 & \Delta m^2 \end{pmatrix}U^\dagger + A\begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\tau} \\ \epsilon_{e\tau} & \epsilon_{\tau\tau} \end{pmatrix}\right]\begin{pmatrix} \nu_e \\ \nu_\tau \end{pmatrix}
$$

$$
P(\nu_e \to \nu_\tau) = \sin^2 2\theta_M \sin^2 \left(\frac{\Delta m_M^2 L}{4E}\right)
$$

$$
\left(\frac{\Delta m_M^2}{2EA}\right)^2 \equiv \left(\frac{\Delta m^2}{2EA}\cos 2\theta - (1 + \epsilon_{ee} - \epsilon_{\tau\tau})\right)^2 + \left(\frac{\Delta m^2}{2EA}\sin 2\theta + 2\epsilon_{e\tau}\right)^2
$$

$$
\sin 2\theta_M \equiv \frac{\Delta m^2 \sin 2\theta + 4EA\epsilon_{e\tau}}{\Delta m_M^2}
$$

Modifies standard oscillation probabilities

Can obscure mass-ordering determination

Can degrade octant and δ_{CP} discovery potential

Can degrade octant and δ_{CP} discovery potential

Charged Current NSI

[Y. Grossman, [hep-ph/9507344\]](https://arxiv.org/abs/hep-ph/9507344)

d

$$
\boxed{\mathcal{L}^{\rm CC}_{\rm NSI} = -2\sqrt{2}G_F\varepsilon^{ff'X}_{\alpha\beta}(\bar\nu_\alpha\gamma^\mu P_L\ell_\beta)(\bar f'\gamma_\mu P_Xf)}
$$

• Flavor mixture states at source and detection.

$$
P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta}^{\rm d}| e^{-iHL} | \nu_{\alpha}^{\rm s} \rangle|^2
$$

• Source NSI (e.g. in pion decay):

$$
|\nu_\alpha^{\rm s}\rangle=|\nu_\alpha\rangle+\sum_{\beta=e,\mu,\tau}\varepsilon_{\alpha\beta}^{\rm s}|\nu_\beta\rangle\,,\quad \text{e.g. } \pi^+\stackrel{\varepsilon_{e\mu}^{\rm s}}{\longrightarrow}\mu^+\nu_e
$$

• Detection NSI (e.g. in neutrino-nucleon scattering):

$$
\langle \nu_{\alpha}^{\rm d}| = \langle \nu_{\alpha}| + \sum_{\beta = e, \mu, \tau} \varepsilon_{\alpha\beta}^{\rm d} \langle \nu_{\beta}| \,, \quad \text{e.g. } \nu_{\tau} n \xrightarrow{\varepsilon_{e\tau}^{\rm d}} e^- p
$$

Interesting Near-Detector Physics

Interesting Near-Detector Physics

$$
P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{i} [U^{s}U^{s}_{M}]_{\alpha i} \exp \left(i \frac{(\Delta m^{2}_{M})_{i\omega}}{4E} \right) \left[U^{d}U^{j}_{\omega\beta} G_{F} \right] \right|^{2}
$$
\n
$$
P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{i} [U^{s}U_{M}]_{\alpha i} \exp \left(i \frac{(\Delta m^{2}_{M})_{i1} L}{4E} \right) \left[U^{d}U_{M} \right]^{t}_{i\beta} \right|^{2}
$$
\n
$$
\text{Zero-distance effect} \qquad \text{[Langacker, London (PRD '88)]}
$$
\nIn the 2-flavor case,\n
$$
\frac{\Delta m^{2} L}{4E} \rightarrow 0 \Rightarrow P(\nu_{e} \rightarrow \nu_{\mu}) \rightarrow \left(\epsilon^{s}_{e\mu} - \epsilon^{d}_{e\mu} \right)^{2}
$$

ESS ν SB), assuming that the neutrino fluxes at source are well-known. Can in principle be probed with a near detector close to the source (e.g.,

CC+NC NSI can make things worse!

Current Constraints* on NC NSI neutrino NSI with quarks in Refs. [127, 130]. The combination of solar neutrino oscillation data with COHERENT

$[Farzan, Tortola 1710.09360]$ $[Farzan, Tortola 1710.09360]$

Current Constraints* on NC NSI neutrino NSI with quarks in Refs. [127, 130]. The combination of solar neutrino oscillation data with COHERENT s^* on NC NSI have been derived using the NSI have been derived using the NSI have been derived using the NSI have s^*

[Farzan, Tortola [1710.09360\]](https://arxiv.org/abs/1710.09360)

	90% C.L. range	origin		90% C.L. range	origin
		NSI with quarks			NSI with quarks
ϵ_{ee}^{dL}	$[-0.3, 0.3]$	CHARM	$\epsilon_{e\mu}^{qL}$	$[-0.023, 0.023]$	accelerator
ϵ_{ee}^{dR}	$[-0.6, 0.5]$	CHARM	$\epsilon_{e\mu}^{qR}$	$[-0.036, 0.036]$	accelerator
$\epsilon_{\mu\mu}^{dV}$	$[-0.042, 0.042]$	$atmospheric + acceleration$	$\epsilon_{e\mu}^{uV}$	$[-0.073, 0.044]$	oscillation data + COHERENT
$\epsilon_{\mu\mu}^{uV}$	$[-0.044, 0.044]$	$atmospheric + acceleration$	$\epsilon_{e\mu}^{dV}$	$[-0.07, 0.04]$	oscillation data + COHERENT
$\epsilon_{\mu\mu}^{dA}$	$[-0.072, 0.057]$	$atmospheric + acceleration$	$\epsilon_{e\tau}^{qL},\,\epsilon_{e\tau}^{qR}$	$[-0.5, 0.5]$	CHARM
$\epsilon_{\mu\mu}^{uA}$	$[-0.094, 0.14]$	$atmospheric + acceleration$	$\epsilon_{e\tau}^{uV}$	$[-0.15, 0.13]$	oscillation data + COHERENT
$\epsilon_{\tau\tau}^{dV}$	$[-0.075, 0.33]$	oscillation data + COHERENT	$\epsilon_{e\tau}^{dV}$	$[-0.13, 0.12]$	oscillation data + COHERENT
$\epsilon_{\tau\tau}^{uV}$	$[-0.09, 0.38]$	oscillation data + COHERENT	$\epsilon_{\mu\tau}^{qL}$	$[-0.023, 0.023]$	accelerator
$\epsilon_{\tau\tau}^{qV}$	$[-0.037, 0.037]$	atmospheric	$\epsilon_{\mu\tau}^{qR}$	$[-0.036, 0.036]$	accelerator
		NSI with electrons	$\epsilon_{\mu\tau}^{qV}$	$[-0.006, 0.0054]$	IceCube
			$\epsilon_{\mu\tau}^{qA}$	$[-0.039, 0.039]$	$atmospheric + acceleration$
ϵ_{ee}^{eL}	$[-0.021, 0.052]$	$solar + KamLAND$			NSI with electrons
ϵ_{ee}^{eR}	$[-0.07, 0.08]$	TEXONO			
$\epsilon_{\mu\mu}^{eL}, \, \epsilon_{\mu\mu}^{eR}$	$[-0.03, 0.03]$	$reactor + acceleration$	$\epsilon_{e\mu}^{eL},\,\epsilon_{e\mu}^{eR}$	$[-0.13, 0.13]$	$reactor + acceleration$
$\epsilon_{\tau\tau}^{eL}$	$[-0.12, 0.06]$	$solar + KamLAND$	$\epsilon_{e\tau}^{eL}$	$[-0.33, 0.33]$	$reactor + acceleration$
$\epsilon_{\tau\tau}^{eR}$	$[-0.98, 0.23]$	solar + KamLAND and Borexino	$\epsilon_{e\tau}^{eR}$	$[-0.28, -0.05]$ & $[0.05, 0.28]$ $[-0.19, 0.19]$	$reactor + acceleration$ TEXONO
	$[-0.25, 0.43]$	$reactor + acceleration$	$\epsilon_{\mu\tau}^{eR}$ $\epsilon^{eL}_{\mu\tau},$	$[-0.10, 0.10]$	$reactor + acceleration$
$\epsilon_{\tau\tau}^{eV}$	$[-0.11, 0.11]$	atmospheric	$\epsilon_{\mu\tau}^{eV}$	$[-0.018, 0.016]$	IceCube

(Flavor-diagonal) (Flavor-changing)

* Conditions apply (one at a time, some constraints do not apply to light mediators)

Current Constraints[∗] on CC NSI

[Farzan, Tortola [1710.09360\]](https://arxiv.org/abs/1710.09360)

	90% C.L. range	origin
		semileptonic NSI
ϵ_{ee}^{udP}	$[-0.015, 0.015]$	Daya Bay
$\epsilon_{e\mu}^{udL}$	$[-0.026, 0.026]$	NOMAD
$\epsilon_{e\mu}^{udR}$	$[-0.037, 0.037]$	NOMAD
$\epsilon_{\tau e}^{udL}$	$[-0.087, 0.087]$	NOMAD
$\epsilon_{\tau e}^{udR}$	$[-0.12, 0.12]$	NOMAD
udL $\epsilon_{\tau\mu}$	$[-0.013, 0.013]$	NOMAD
$\epsilon_{\tau\mu}^{udR}$	$[-0.018, 0.018]$	NOMAD
		purely leptonic NSI
$\epsilon_{\alpha e}^{\mu eR}$	$[-0.025, 0.025]$	KARMEN
$e^{\mu eR}$ $\epsilon_{\alpha\beta}^{\mu e L}$ $\alpha\beta$	$[-0.030, 0.030]$	kinematic G_F

Current Constraints[∗] on CC NSI

90% C.L. range origin semileptonic NSI ϵ_{ee}^{udP} $[-0.015, 0.015]$ Daya Bay $_{udL}$ $-0.026, 0.026]$ **NOMAD** $\epsilon_{e\mu}^{uu}$ udR $-0.037, 0.037$ **NOMAD** $\epsilon_{e\mu}^{uu}$ $\epsilon_{\tau e}^{udL}$ $-0.087, 0.087$ **NOMAD** $\epsilon_{\tau e}^{udR}$ $[-0.12, 0.12]$ **NOMAD** $\epsilon_{\tau\mu}^{udL}$ $-0.013, 0.013$ **NOMAD** udR $-0.018, 0.018$ **NOMAD** purely leptonic NSI μeL $\epsilon_{\alpha e}^{\mu eR}$ $-0.025, 0.025$ **KARMEN** $\epsilon_{\alpha\beta}^{\mu eR}$ $-0.030, 0.030]$ kinematic G_F

[Farzan, Tortola [1710.09360\]](https://arxiv.org/abs/1710.09360)

- From model-building perspective, getting 'large' CC NSI is more difficult than NC NSI.
- In some models (with purely leptonic NSI), CC and NC NSI are correlated by Fierz transformation.
- We will mostly focus on NC NSI (unless otherwise specified).

Global Fit

Future Prospects at DUNE

- Long baseline, huge statistics, intense & well-characterized beam.
- Excellent sensitivity to matter NSI.

[de Gouvêa, Kelly [1511.05562;](https://arxiv.org/abs/1511.05562) Coloma [1511.06357;](https://arxiv.org/abs/1511.06357) Blennow *et al.* [1606.08851;](https://arxiv.org/abs/1606.08851) Liao, Marfatia,

Whisnant [1612.01443;](https://arxiv.org/abs/1612.01443) Chatterjee *et al* [1809.09313;](https://arxiv.org/abs/1809.09313) Han *et al* [1910.03272\]](https://arxiv.org/abs/1910.03272)

Improved DUNE Sensitivity to NSI

[Chatterjee, BD, Machado [2106.04597\]](https://arxiv.org/abs/2106.04597)

Dependence on δ_{CP}

[Chatterjee, BD, Machado [2106.04597\]](https://arxiv.org/abs/2106.04597)

Breaking Degeneracies

[Chatterjee, BD, Machado [2106.04597\]](https://arxiv.org/abs/2106.04597)

Improved δ_{CP} Sensitivity

[Chatterjee, BD, Machado [2106.04597;](https://arxiv.org/abs/2106.04597)

see also De Romeri, Fernandez-Martinez, Sorel, [1607.00293\]](https://arxiv.org/abs/1607.00293)

Hint of NSI?

[Chatterjee, Palazzo [2008.04161](https://arxiv.org/abs/2008.04161) (PRL); see also Denton, Gehrlein, Pestes [2008.01110](https://arxiv.org/abs/2008.01110) (PRL)]

Hint of NSI?

[Chatterjee, Palazzo [2008.04161](https://arxiv.org/abs/2008.04161) (PRL); see also Denton, Gehrlein, Pestes [2008.01110](https://arxiv.org/abs/2008.01110) (PRL)]

T2K-NO*ν*A anomaly persists in 2024 data!

But not conclusive yet!

[Chatterjee, Palazzo [2409.10599\]](https://arxiv.org/abs/2409.10599)

Strong constraints from IceCube and KM3NeT

KM3NeT/ORCA6 preliminary, 433 kton-yr

Outline

• Lecture 1: NSI Basics

Lecture 2: NSI Model Building and Phenomenology

- Challenges
- EFT approach
- UV-completion
- Heavy mediators
- Light mediators
- Loop-induced NSI

Lecture 3: Beyond *ε* – Scalar NSI, NSSI, Neutrino-DM interactions, ...