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Sterile neutrinos as dark matter

Simplest scenario accounting for the dark matter of the Universe

e One new particle, vs
e No new symmetries
e Two new parameters: mbpM, Oas.

Five things to know about sterile neutrino dark matter

@ Sterile neutrinos can be produced in the early Universe
via mixing va - Vs.

@ Sterile neutrinos should not be overproduced = upper limit on the
mixing angle as a function of the DM mass

@ The existence of a lepton asymmetry can resonantly enhance the
dark matter production, via the MSW mechanism.
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@ Sterile neutrinos are fermions and obey the exclusion principle. It 1s

not possible to have an arbitrarily large vs number density.
The observed DM density in dwarf galaxies implies a lower limit
on the DM mass.

@ Sterile neutrinos are not absolutely stable
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Sterile neutrinos as dark matter

Hints for an unidentified X-ray line signal

Bulbul et al, 1402.2301
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e Not observed in the deep “blank sky” dataset. Probably not instrumental.
e Observed 1n different datasets at different redshifts.
e Atomic origin not demonstrated: candidate atomic lines expected to be

much fainter.
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e Not observed in the deep “blank sky’ dataset. Probably not instrumental.
e Observed 1n different datasets at different redshifts.
e Atomic origin not demonstrated: candidate atomic lines expected to be

much fainter.

e Originated by sterile neutrino decay?



Sterile neutrinos as dark matter

Bulbul et al, 1402.2301 Boyarsky al, 1402.4119
mpyv = T1.1keV mpy = 7.06 £0.05keV
sin20 ~ 7x 107 sin?20 = (2.2—20) x 107"
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Requires nL/s ~ 10~ (compared to np/s ~ 107°)

The future Athena mission will hopefully clarify the nature of this line.
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The freeze-out mechanism

production The probability of interaction controlled
- by the cross-section
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DM SM | O Small interaction rate
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The freeze-out mechanism
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annihilation
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scattering

At very high temperatures,
dark matter particles are annihilated
and regenerated at the same rate.

However, at low temperatures,

the Standard Model particles do not
have enough kinetic energy to
regenerate DM particles, and DM
particles can only annihilate.

The subsequent evolution of the dark
matter number density depends
crucially on the fact that our Universe
1s expanding.
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Dark matter population in a static Universe

No DM particles at present times!




Dark matter population in an expanding Universe













Dark matter particles can no longer annihilate.
The number of dark matter particles “freezes-out™
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The “relic abundance™ of dark matter particles depends on
their annihilation cross section and on their relative velocity

r )
Small velocity — Large relic abundance
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The basic tool: the Boltzmann equation

Boltzmann equation for the dark matter number density in an
expanding Universe:

change of n = production - destruction

production
-

DM SM

DM SM

. ° . >
annihilation




WIMP history (in a nutshell)

“yield,’

time



WIMP history (in a nutshell)

“yield” =number density of DM particles per comoving volume

v _ number density

s entropy density




WIMP history (in a nutshell)

“yield” =number density of DM particles per comoving volume

v _ number density

s entropy density

temperature time




WIMP history (in a nutshell)

“yield” =number density of DM particles per comoving volume

n  number densit
Y = - = Y

s entropy density

temperature time

Early Universe today



WIMP history (in a nutshell)

(44 h 29 SM
yield inflaton <
SM

temperature time

End of inflation



WIMP history (in a nutshell)

[ 29 SM
yield”inflaton <
SM
DM .
inflaton inflaton
decay
DM

temperature




WIMP history (in a nutshell)

(44 h 29 SM
yield”in faton <
SM

DM p
inflaton < inflaton @

decay |
DM o

temperature




WIMP history (in a nutshell)

o SM SM DM
yield”inflaton \ / “thermal

/ \ production”
SM SM DM

o inflaton @
»

decay

temperature

Assume that the temperature of the Universe after
reheating was much larger than the DM mass.

T@mbpwm



WIMP history (in a nutshell)

L SM  SM DM
yield”inflaton \ / “thermal

/ \ production”
SM SM DM

o inflaton @
»

decay

temperature

Assume that the temperature of the Universe after
reheating was much larger than the DM mass.

T@mbpwm



WIMP history (in a nutshell)

temperature

T@mbpwm



WIMP history (in a nutshell)

temperature

T@mbpwm



WIMP history (in a nutshell)

DM creation and
destruction at equal rates

DM > SM
“yield” \ /
SM DM
\.” o N
SM / \D

temperature

T@mbpwm



WIMP history (in a nutshell)

DM creation and
destruction at equal rates

DMo ", SM
“yield” \ /
DM /l \ SM

Note: after the DM has reached thermal equilibrium,
the subsequent evolution does not remember how
the DM was initially produced.

temperature
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WIMP history (in a nutshell)

DM creation and — SM

DM
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The DM population today!!

temperature time
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(ov) ~3 x107*°cm®s™! =1pb-c
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Fraction of the total 6 x 10727 em3

L1 S_

energy of the Universe =~
in the form of DM (ov)

Correct DM abundance (25% of the total energy of the Universe), 1f

The dark matter 1s a Weakly Interacting
Massive Particle (WIMP)

DM SM More numerology:

(0.1)*  coupling’
(100 GeV)?2  mass?

1 pb ~

bM SM The freeze-out mechanism suggests that the

WIMP has mass ~ a few GeV — a few TeV and
a coupling with ordinary matter ~ 0.1 — 0.01
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A toy dark matter model

We extend the Standard Model with two new particles;
v, Majorana fermion, “Dark matter particle”.
N, complex scalar. “Mediator”.

We assume:
1) v and n are odd under a Z2 symmetry, while the SM particles are even.
2) y 1s lighter than n = n 1s absolutely stable due to the Z2 symmetry.
3) y 1s a singlet under the Standard Model gauge group.

4) n has quantum numbers that allow a Yukawa coupling of y with
one SM fermion (e.g. a right-handed fermion).

LEomon = —yy frn + he.
Lroir = X (@1 @) (1)

1nt



A toy dark matter model

For mn/my << 1, the interaction can be described by a contact term.

Z
=

—— —

n

X/Jj/\ R

. 0.12 /1.85\"° m 4 m —2
Q h? ~ 1 X
"N, ( y ) (SUUGeV) (1UUGeV)

For every dark matter mass, there 1s always a choice of the coupling
and the mediator mass that reproduces the observed DM abundance.




DM coupling to quarks
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If the mediator and the dark matter have comparable masses, the mediator
1s present in the thermal plasma during the epoch of freeze-out.

New channels deplete the number of dark matter particles, via “coannihilations”,
and lower the dark matter relic abundance. Griest, Seckel '91
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If the mediator and the dark matter have comparable masses, the mediator
1s present in the thermal plasma during the epoch of freeze-out.

New channels deplete the number of dark matter particles, via “coannihilations”,
and lower the dark matter relic abundance.
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If the mediator and the dark matter have comparable masses, the mediator
1s present in the thermal plasma during the epoch of freeze-out.

New channels deplete the number of dark matter particles, via “coannihilations”,
and lower the dark matter relic abundance.

T T
OeffU ~ OyyU + OypU € +opve
4 4
Yy C yggg y O
2 XX 9 C)(Tj 2

X ms Y
2
1 my

QXhQ X

e

(Oetv) Y (Cxx) + 4% 9% (Cxn) + 9% (Ci)

If the Boltzmann-suppression factor is not very big (Crnn#0),

the nm annihilations can lower the DM density below the
measured value.



Connecting dark matter and neutrino masses?

We extend the Standard Model with two new particles;
v, Majorana fermion. Singlet under the SM gauge group. Odd under 72
N, complex scalar. Same quantum numbers as the SM Higgs. Odd under 72

Lfermlon L _yznx + h.c.

int
. 1
—L3T = As(HH)(n'n) + Xa(H'n) (0" H) + 5 As (n' H) (' H)
A » (:-")O
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* Dark matter particles annihilate into ordinary particles, such as electrons

and positrons, antiprotons, neutrinos, photons...

* Neutrinos propagate in the galaxy in straight lines practically without
losing energy (in contrast to charged particles).
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losing energy (in contrast to charged particles).

* Neutrinos from DM annihilations arrive to the detector together with

neutrinos produced in conventional processes (primarily collisions of
cosmic rays with the Earth’s atmosphere).




Indirect dark matter searches

e,e
v,V
p,p, ..
Y

ZiN

DM \
DM /
* Dark matter particles annihilate into ordinary particles, such as electrons
and positrons, antiprotons, neutrinos, photons...
* Neutrinos propagate in the galaxy in straight lines practically without
losing energy (in contrast to charged particles).
* Neutrinos from DM annihilations arrive to the detector together with
neutrinos produced 1n conventional processes (primarily collisions of
cosmic rays with the Earth’s atmosphere).

* The existence of dark matter can then be inferred if there 1s a significant
excess 1n the fluxes compared to the expected backgrounds.



Probing the annihilation cross-section

Neutrinos from dark matter annihilations in the Milky Way halo
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Probing the annihilation cross-section

Neutrinos from dark matter annihilations in the Milky Way halo
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Probing the annihilation cross-section

Neutrinos from dark matter annihilations in the Milky Way halo
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Limits on the annihilation cross-section

Neutrinos from dark matter annihilations in the Milky Way halo
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Limits on the annihilation cross-section

gamma-rays from DM annihilations antiprotons from DM annihilations
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Limits on the annihilation cross-section

Neutrinos from dark matter annihilations in dwarf galaxies & galaxy clusters.
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