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 One new particle, ns

 Two new parameters: mDM, qas.
 No new symmetries

Five things to know about sterile neutrino dark matter

2   Sterile neutrinos should not be overproduced  upper limit on the 
     mixing angle as a function of the DM mass

3   The existence of a lepton asymmetry can resonantly enhance the
     dark matter production, via the MSW mechanism.

1   Sterile neutrinos can be produced in the early Universe 
     via mixing na - ns.
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4   Sterile neutrinos are fermions and obey the exclusion principle. It is
     not possible to have an arbitrarily large ns number density.
     The observed DM density in dwarf galaxies implies a lower limit
     on the DM mass. 

5   Sterile neutrinos are not absolutely stable
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Boyarsky al, 1402.4119Bulbul et al, 1402.2301

3.53±0.025

 Not observed in the deep “blank sky” dataset. Probably not instrumental.

 Observed in different datasets at different redshifts. 

 Atomic origin not demonstrated: candidate atomic lines expected to be 
   much fainter.

 Originated by sterile neutrino decay?

Hints for an unidentified X-ray line signal



  

Sterile neutrinos as dark matterSterile neutrinos as dark matter
Bulbul et al, 1402.2301 Boyarsky al, 1402.4119

The future Athena mission will hopefully clarify the nature of this line. 

Requires nL/s ~ 10-5 (compared to nB/s ~ 10-10 ) 
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At very high temperatures, 
dark matter particles are annihilated 
and regenerated at the same rate.

However, at low temperatures, 
the Standard Model particles do not
have enough kinetic energy to 
regenerate DM particles, and DM
particles can only annihilate. 

The subsequent evolution of the dark
matter number density depends 
crucially on the fact that our Universe
is expanding.
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Dark matter population in a static Universe

No DM particles at present times!



Dark matter population in an expanding Universe









Dark matter particles can no longer annihilate.
The number of dark matter particles “freezes-out”
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The “relic abundance” of dark matter particles depends on 
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Large velocity → Small relic abundance
Small velocity → Large relic abundance

The “relic abundance” of dark matter particles depends on 
their annihilation cross section and on their relative velocity





Boltzmann equation for the dark matter number density in an 
expanding Universe:

The basic tool: the Boltzmann equationThe basic tool: the Boltzmann equation
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= number density of DM particles per comoving volume
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SMDM

SMDM

DM creation and 
destruction at equal rates

Note: after the DM has reached thermal equilibrium,
the subsequent evolution does not remember how
the DM was initially produced. 
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The dark matter is a Weakly Interacting 
Massive Particle (WIMP)

More numerology:

The freeze-out mechanism suggests that the 
WIMP has mass ~ a few GeV – a few TeV and 
a coupling with ordinary matter ~ 0.1 – 0.01
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A toy dark matter modelA toy dark matter model
We extend the Standard Model with two new particles; 

c,  Majorana fermion, “Dark matter particle”.
h, complex scalar. “Mediator”.

We assume:
1) c and h are odd under a Z2 symmetry, while the SM particles are even.
2) c is lighter than h  h is absolutely stable due to the  Z2 symmetry.
3) c is a singlet under the Standard Model gauge group.
4) h has quantum numbers that allow a Yukawa coupling of c with
    one SM fermion (e.g. a right-handed fermion).



For mh/mc << 1, the interaction can be described by a contact term.

For every dark matter mass, there is always a choice of the coupling
and the mediator mass that reproduces the observed DM abundance.
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A toy dark matter modelA toy dark matter model



Garny, AI. Vogl, 
1503.01500 
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If the mediator and the dark matter have comparable masses, the mediator
is present in the thermal plasma during the epoch of freeze-out.

~ y4

~ y2g2

~ g4

New channels deplete the number of dark matter particles, via “coannihilations”, 
and lower the dark matter relic abundance. Griest, Seckel '91



If the mediator and the dark matter have comparable masses, the mediator
is present in the thermal plasma during the epoch of freeze-out.

~ y4

~ y2g2

~ g4

Rate compared to ccqq suppressed by

Rate compared to ccqq suppressed by

New channels deplete the number of dark matter particles, via “coannihilations”, 
and lower the dark matter relic abundance.

n/s

m/T

~ exp(-m/T)



If the mediator and the dark matter have comparable masses, the mediator
is present in the thermal plasma during the epoch of freeze-out.

New channels deplete the number of dark matter particles, via “coannihilations”, 
and lower the dark matter relic abundance.

If the Boltzmann-suppression factor is not very big (Chh0),
the hh annihilations can lower the DM density below the 
measured value.  



Connecting dark matter and neutrino masses?Connecting dark matter and neutrino masses?
We extend the Standard Model with two new particles; 

c,  Majorana fermion. Singlet under the SM gauge group. Odd under Z2

h, complex scalar. Same quantum numbers as the SM Higgs. Odd under Z2

Tao’ 96
Ma’ 06
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● Dark matter particles annihilate into ordinary particles, such as electrons 
and positrons, antiprotons, neutrinos, photons…
● Neutrinos propagate in the galaxy in straight lines practically without 
 losing energy (in contrast to charged particles).

● Neutrinos from DM annihilations arrive to the detector together with 
neutrinos produced in conventional processes (primarily collisions of 
cosmic rays with the Earth’s atmosphere).

● The existence of dark matter can then be inferred if there is a significant 
excess in the fluxes compared to the expected backgrounds.

Indirect dark matter searches



Probing the annihilation cross-sectionProbing the annihilation cross-section

Source term
(particle physics)

Line-of-sight integral
(astrophysics)

Neutrinos from dark matter annihilations in the Milky Way halo
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Source term
(particle physics)

Line-of-sight integral
(astrophysics)

IceCube

SuperK

Neutrinos from dark matter annihilations in the Milky Way halo
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Baltz et al.
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Where to look for annihilating dark matter Baltz et al.
arXiv:0806.2911

Features in the 
energy spectrum



Limits on the annihilation cross-sectionLimits on the annihilation cross-section

IceCube 2023 

Neutrinos from dark matter annihilations in the Milky Way halo



gamma-rays from DM annihilations

Limits on the annihilation cross-sectionLimits on the annihilation cross-section

antiprotons from DM annihilations

Reinert, Winkler. 
1712.00002

Fermi coll. ‘17



Aartsen et al., arXiv:1307.3473

Limits on the annihilation cross-sectionLimits on the annihilation cross-section
Neutrinos from dark matter annihilations in dwarf galaxies & galaxy clusters.
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