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Evolution equation

If loss of coherence and other complications related to WP picture

are irrelevant - ** point-like" picture. Evolution equation:
r 2

. d¥ Ve
'F—H‘P Y=y,

Ve

\. J

For ultra relativistic v
2
H = E ~ p + L

2E
omit p, substitute m® > M M*, where M is 3x3 mass matrix
H = M M*
2E

MM =U Mdiagz U+

, . ) , , U - mixing matrix
My, = diag (M2, Mm%, m3?)




Hamiltonian for 2v

In the flavor basis  v;=(v,, V)T

M M~
Hiot = “2E

. 2 _| cos®b sin 0
MM = U Myog™ U J [— sin® cos GJ
Mdi092 = diag (Mm%, m,?)

Am2 |- €os 20 sin 20
Hiot = 4F

sin 20 cos 20




Neutrino polarization vector e rieer spce

Polarization vector: Re v,'v,
P=| Imv, v,
v, v, - 1/2
Pauli matrices elements of
density matrix

P=vyol2vy

g;}f =-(BoR2)Y¥Y

where B = Zl (sin 20, 0, cos20)

Differentiating P and using evolution equation for ¥

dP _
I = -[B xP]

coincides with equation for the electron spin precession
in the magnetic field




Graphic representation

of oscillations as the electron spin precession in the magnetic field

Neutrino polarization
vector in the flavor
space

|P| =% polarization vector

B-=- —Zﬂ(sin 20, 0, cos20)

l,

P,,=v,v,=P,+1/2

¢ = 2nt/l, oscillation phase

In general, degrees of
freedom in matter:

0, (n, E) - mixing angle
O, (n, E) - phase
0.0ne (dn/dx) - cone angle

Subscript m means in medium
for vacuum



1, Refraction
Watter potentials



Refraction

at low energies Re A >>Im A
inelastic interactions can be neglected

Elastic forward V. V
scattering » o

potentials
Refraction index:
n-1=V/p
for E =10 MeV

n-1= /~102% inside the Earth
<108 inside the Sun

oz

%

L. Wolfenstein, 1978

for v, v,

difference of potentials

V= V,-V,=\26en,

V ~ 10- 183 eV inside the Earth




Matter potential computations

Hint(V): <\|!|Hint|\|f> =V vtv

v - wave function of medium Ve e
for CC interactions with electrons: |y > = |e> T~
W
after Fierz transformation %
i = -ZE Ty (1-75) vEY,(1-75) e T~
\1_2_ e Ve

specific matrix elements:

<e|yy(L-vs)|e>=n, electron number density mp |V = N2 Gen,

<e|y| e>=n,v - velocity of electrons For unpolarized

medium at rest
- averaged polarization vector

<elyvsle> = neh. of electrons



Matter potential

Essentially classical consideration: electrons generate classical field
interacting with neutrinos

Potential can be derived by summation (integration) of Yukawa
potentials with radius 1/m,, produced by individual electrons

> e 0]
V(r) = Zg—\/\ dx n,(x) 1 g MwIr-x
0

47 |r - x|

For uniform density distribution after integration over angular

variables
o0

2
V= Zfodr rén.g- e
This requires uniform distribution of e in the radius of several 1/m,,

The integration gives V.= 2\]5,:ne




From micro to macro picture

From interactions with individual scatteres to effective potential
(mean field approximation)

E Kh. Akhmedov Point-like scatterers, a coarse graining -

2010.07847 [hep-ph] ~coordinate space averaging over macroscopic
volumes with large number of particles

A.Y.S., Xun-jie Xu ~ Summation of potentials produced by individual
scatteres.

eg., GFantini, — For short range interactions ry, localization
A.G. Rosso, F. Vissani  of scatterers should be taken into account
1802.05781 X, > ryr ., e.g. localization of e in atom

. . since A,~ 1/p, <« X,
o> e

- make sense to

. .. . . consider propagation of

neutrino inside atom?




Modeling with castle wall profile

n b
: \
X
Vo Vb Half - phases: ¢, ¢,
L. L,  Mixing angles: 6, 0,
Oscillation probability E. Kh. Akhmedov

P=[1-I2/(1-R2)]sin2(n&) (=arcosR n-number of periods
I-= I(¢a , Op, 045 O ), R= R((I)af Pp. Oq, Op )
For ¢, ¢, << 1 the probability can be reduced to
P = sin 226, (V) sin2 +o(V)
Vol Vi Ly

- averaged potential

V= La+Lb




O —
Eijenstates and mixing



Hamiltonian in matter

Add to energy in vacuum the potential which describes interaction of
neutrino with matter

H(n,E)=Hy+V V=diag(V,,0,0)

ve - \IE GFne
in the flavor basis

This can be obtained in a systematic way starting from
Lagrangian for neutrinos, electrons and W-bosons.

... find EOM, take non-relativistic electrons, use zero
component of current which give density of electrons




Eigenstates in matter

Eigenstates of the Hamiltonian in matter:

H(nelE):HO+v(ne)

Play the same role as mass states in vacuum

Vk 2 Vo k=1,2,3

In matter with constant density v, propagate independently.

Formally, they diagonalize Hamiltonian H - in the basis of v,
the Hamiltonian is diagonal. Consequently, equation of motions for
them split.




Evolution in terms of eigenstates in matter

Vpr'oduced

Dggo:npose : By definition they Projection onto
nitial state into propagate independently detected state
eigenstates of

propagation Transitions between them

are negligible or small

if density
varies




Flavor mixing in matter

Mixing in matter is determined with respect to eigenstates in matter

Mixing matrix in matter connects the flavor states with eigenstates
In matter: ve= Umy

in the same way as in vacuum the PMNS matrix connects the flavor
states with mass states:

Upmns 2 UM(n,, E)

Um diagonalizes the Hamiltonian in matter
eigenvalues of

Um+ H UM = Hdiag Heos = diag(Him, Ham: H3n)  the Hamiltonian

Inverting relation:
v, = U™(n,, E) v¢

which means that flavor composition of eigenstates depends on n, and E




hamiltonian, eigenstates and eigenvalues

H(n, E)=Hy+V
V = diag (V,, 0)

In the flavor basis, (v, v,)T
a2 [-COS 20+ sin20 Ve
Hiot = 4E
sin 20 cos 20 \%

&= 4TYne2—E ve:\l?GFne




Mixing in matter

Diagonalization of the Hamiltonian:
sin%20

sin%20, =
" (cos26 - 2EV/Am2)? + sin 226

Mixing is maximal sin®26, =1, if

Am? .
V = 2E cos20 Resonance condition

H.= H,
Difference of the eigenvalues

Hom - Him =

M | (cos20 - 2EV/Am2)? + sin 220

2E




Resonance

Dependence of mixing on density,
energy has a resonance character

sin2 20,

sin?26,, = 0.825

In resonance: sin? 26,, =1
- flavor mixing is maximal

= |, cos26

v

Vacuum
oscillation ~ -
length

Resonance width: Any = 2n, tan26

5 ° © ° T} 0

1

2

— density I,/1, ~nE

0,2 0 0,=0 0,=n/4

Mixing is suppressed
at high densities

" 2E

0, > /2

Am?2 » Flavor states coincide with

eigenstates and vice versa



Level crossing

V. Rubakov, private comm.

N. Cabibbo, Savonlinna 1985

H. Bethe, PRL 57 (1986) 1271
Dependence of the eigenvalues

on the matter potential (density):

_ 2EV
- TAM?

Crossing point - resonance

= C0S 20
IO

In the crossing point
- the level split is minimal
- the oscillation length is maximal

Hirm

resonance

sin® 26y, = 0.825)

4

Large
mixing

Small
mixing
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Oscillations in matter

Constant density medium:
the same dynamics as in vacuum

Vk 9 mG

Mixing changed
6 > 0,,(n)

Difference of eigenvalues
changed

Am?
2E

> AH

- difference of phase
velocities changed

Am?

V = cos20 oF




Oscillations in matter

Probability in P(v, > v,) = sin220_ S1ﬂ2

constant density P [ ]
depth of
oscillations

osculla’ror'y hal

factor f-phase ¢

0,,(E,n) - mixing angle in matter
| (E,n) - oscillation length in matter
L2 1,
Im =2 TE/(HZm o Hlm)

Maximal effect: sin“20,,=1 B MSW resonance condition
b= w2 + nk




Resonance enhancement o neatrinos propagating
Survival probability

Large mixing sin?20 = 0.824  Layer of length L k=mrL/l,

thin layer k=1 thick layer k=10




Oscillation in the Earth, ORCA

Small mixing sin?26 = 0.08

thin layer k=1

B

thick layer k=10

TR A\ /
A4 1 A R
Mt 1

0.8
0.6
0.4+

0.2




Resonance enhancement




Graphic representation

Ei<E,<E3<Ey E,

Precession on the E,~ Eg
surface of the cone

Resonance enhancement




Ndiabratic

ConversIon



The MSW effects

- the flavor transformations driven by dependence of the mixing
in matter on density or/and energy of neutrino.

vi = UM(E, n) v,
N

Mixing matrix Eigenstates of

Flavor

states in matter Hgmil’ronicm in mater -
Eigenstates of
propagation

Mixing angles 0™(E, n) |BECOMEIVNGMICAINGRIGBIESN

in contrast, to mixing in vacuum

Dependence of sin?26™ on E and n has resonance character




Varying density

Inserting in evolution equation for the flavor states v¢ = Umv,

d m
I 1?}_ [Hdlag + | Um+ ddLTJVm Hdi09 = diag(Hlm, HZml H3m)

- off - diagonal

If density changes slowly enough, so that

m
[ m+ ddL,)r J”« Hin - Hjn  adiabaticity condition
N Slow change of mixing
equation for the eigenstates splits:

ddVT Hdiag Vi

The eigenstates evolve independently, transitions Vin 4% Vjn are absent

as in constant density.

In contrast to constant density case, the flavors of v;,, change according
to density change



Adiahatic conversion

resonance

if density
changes
slowly

amplitudes of the wave packets do not change
)rs of the eigenstates being determined by mixing
e follow the density change




Non-oscillatory transitian

Single eigenstate:
- no interference
- no oscillations

- phase is irrelevan

This happens when
mixing is very small
in matter with very
high density




Non-oscillatoryAti@nsition

resonance vacuum

<v,|v,> = sind X

mixing is very small Survival

e - einl
Single eigenstate: probability P, = sin°0

- ho infgrference if density changes slowly (adiabatically)
=~ ho OSC'.”C‘_*'O”S — no other eigenstate appear
- phase is irrelevant N

Vom™7 V2

Mixing and therefore the flavor content
changes according to density change




Spatial picture

Adiabatic conversion

interplay of adiabatic
conversion and oscillations

Non-oscillatory transition
is modulated by oscillations

>
g
0
-]
0
O
| -
o
o
2
>
| -
3
1)

distance




Adiabatic conversion probability

Sun, Supernova

Initial state:  v(0) = v, = c0s6,.° v;,,(0) + sin6,° v, (0)

g

Adiabatic evolution vin(0) =2 vy in production point

to the surface of 0) >
the Sun (zero density): Van(0) > vz

» Final state:  v(f) = cos8,° v, + sin6, " v, e i

PI"Obii“Ty to find Pee = |<ve|v(f)>|2 = (COS@ COS@mO)Z + (sine Sin@mO)Z

v, averaged over ) ,
oscillations = 0.5[ 1+ cos2b,,° cos2b ]

or P,, =sin%0 + cos 26 cos?6,°

Mixing angle in matter




Adiabaticity violation

~ |H2m' Hlml

6ﬂ'\

dt
the of f-diagonal terms in the Hamiltonian can not be neglected

If density n,(t) changes fast

transitions | v, 4@ v,

Admixtures of Vin Vo in a given propagating neutrino state change
AH
" " Jump probability”= penetration under barrier: | p =g E

A

H H,. E,=d6,/dt ~1/h,
is the energy associated
to change of density

T AH

Hlm
- Landau-Zenner

n’ Vg - adiabaticity
parameter




Adiabatic conversion

Pure adiabatic conversion Partially adiabatic conversion




Parametric
effects

Propagation on the Earth

Wavy field

In central parts of SN

in neutrino field -collective oscilations



- V. Ermilova V. Tsarev, V. Chechin,
arametric enhancement e e e
Strong transition if there is a harmonic modulation of density profile

h (Xx) = <n> + n; cos wy X

Parametric resonance condition:
kog=A,(n), k=1,2 ..

2
Am(<n>) - éﬂE [(COSZG - ZVE/AmZ)Z + g5in220 ]%

is frequency of oscillations for P
the average density

Realized in astrophysical objects?

Without modulations




Parametric oscillations
E. Kh. Akhmedov , 1988

" " Castle wall profile”

Parametric enhancement of oscillations

" " Castle wall profile”

Y=o

1 - —
D, =D,=m
I' \\\
: 4
20,
Jon -2
," 6
3




Paramelrc ennancementinthe Earth 13 mode

N

mantle

mantle

In the Earth
2 3

mantle core

mantle




Fuzzy dark matter and paramelric resonance

Ultra-light scalar DM A. Berlin, 1608.01307 [hep-ph]

o(t, x)~ \zn[')\d)(X) cos (m, 1)

Couples to neutrinos: g, ¢ viv; + ..

give contribution to neutrino mass and modifies mixing
Sm(t)= g, ¢ (1)  ABy (1) = g, ¢ (1) / Amy

Neutrinos propagating in this field will experience variation of mixing
with frequency given by m, - mass states oscillate

For m, = 1022 eV, the modulation length I,y = 2n/m, = 107 cm
Parametric resonance: |4 = I,

For solar mass splitting £ =3 x 103 PeV (10-22 eV/m, )
Ees = 3 PeV form, = 1017 eV

For m,=1010eV, | 4~ 10°cm » M. Losada et al,
Effects in lab. Experiments, KamLAND, JUNO 2202.09769 [hep-ph]




4 vy~ Stltering
and eolleetive
firansforimations




V'V -scattering

Refraction in
heutrino gases

Vp

+-channel /ve(p) elastic forward scattering

- coherent

Vb Vo(q) V=26 (l-v. v ),
v, velocities

J. Pantaleone
# Momentum exchange = flavor exchange

v.(q) vy (Q) - flavor mixing
vi(p) Can it be coherent?

u-channel ve(p)




J. Pantaleone

Coherence of flavor exchange - ="

Coherence if the background
is a mixture of flavor states:

<

o
-3
o

C—
®
0
=
o
S

o

for ith particle of background

|Vib> - (Die |Ve> + (Dir |Vr>

®,, - (®;. -) amplitude to find
v, (v.) in ith bkgr. neutrino

coherent

background

[<> Invertin
projection - J
|Ve> = (Die* |Vb> w (Dir* | Va >

transition v, + v, 2 v+ v, with amplitude ~ @, @,
and unchanged background
-~ summation over background neutrinos is coherent

This generates flavor non - diagonal potential V, ~ 3. q)ie*q)iT
also diagonal one




Neutrino term in the Hamiltonian

Contribution to the Hamiltonian in the flavor basis

(Die ’ (I)ie*q)ir
va:\]—ZGin(l-vevb) [ | J

D ®;.” ;.|

e = It

where CDie:\l?be O, = \P,.

The Hamiltonian in symmetric form:

H. =4 [ V, 2V, e“j
2V et -V,

where

vV, "‘\E Gen(1 - v, vp)( Ppe - Pyo) VV ~ \E Gen(l-v, v) 4 PoeP-

The effective coupling constants in V include probabilities




Instabilities and fast transition - e v e

Exponential grow of the transition probabilities

In the Hamiltonian depend on
probabilities which have
oscillatory dependence

Parametric enhancement
induced by modulations of
the neutrino potentials with

growing amplitude

AB, /AT ~ B,

The cone angle and transition
probability increase exponentially




Bacikup



Oscillation length in matter

Oscillation _ _A4nE
length in vacuum Am?

Refraction - determines the phase produced

21
| =
length ° N2 Gen, | by interaction with matter

«— | /sin20 (maximum atl,= 1, /c0s20)

shifts with respect
21 resonance energy:

Hom - Hap l, (Eg) = 1,C0520

converges to the
refraction length




Level crossings

Normal mass ordering

0.1 GeV 6 GeV

Resonance region High energy range




Flavor in matter

Normal mass hierarchy, neutrinos

Density increase -

V3m

I

V2m

T T

v1m

N [

1-2 resonance




Parametric enhancement in the Earth,1-2 mode

mantle ;

I

/

mantle

tan2912 =0.450, ®=24.9°, E=0.20 GeV
T 7 T T T T 7 T

L 1 1 L I L L

0
position




Total Hamiltonian

(_ cos26 o, + V,+V, sin26 o, + 2V, eit

\

sin26 o, + ZVV e 0 cos2b o, - V, - V,
_/

-

includes the vacuum contribution: ®, = Am2/2E and
usual matter potential V,

Neutrino V,~VD0(1-PE ) if v, is produced
po’ren’rlals VV ~ VVOV PBer (1 - PBer) (I) - Ar'g [CDe CDT*]

P8,.(x) - effective transition probability of the background neutrinos

In the central parts of collapsing star V,.>> V> o




Evolution equation

Ensemble of neutrino polarization vectors P,
Negative frequencies
for antineutrinos

d.P. = (- ©B +2L+ uP) x P,

¢ 0 &

Vacuum mixing term Usual matter Collective vector
potential |
+inf
B= (sin20, O, cos20) L= (0, 0, 1) P=|do P,
inf
(DZAmZ/ZE kZV-\lZGFne

H :\I?Gan(l - Cos evv)

The term describes
collective effects




Effective theory of collective oscillations

Difficult to solve although

Some results can be seen from general
form of the evolution equation

effects which can lead to problems of realizations of
strong flavor transformations these conditions in realistic
Conditions for these effects supernova




Total Hamiltonian and potentials

~N r

Ccos20my+ V,+V,  sin20 o, + 2V, e

H=3

A%

J

sin20 o, + 2V, et c0s20 o, - V, - V
-

Potentials V,~VO(1-PE ) pB
V, ~V9(Pe_(1-P8,)

P

et et

hon-linearity
P8,.(x) - effective transition probability of the background neutrinos

V(a >> VV >> ®

Hdiqg ~ ve Hnon-diag ~ VVO ‘, Pbe’c <VVO (1) ~ \/\d'l' AH

AH~V, do/dt ~V,

if @<« V,, H depends on potentials only - evolution of
neutrinos and antineutrinos is the same - bi-polar oscillations




Properties of potentials

Potentials are integrals of oscillation amplitudes
which have oscillatory dependence on time.

Therefore potentials are also expected to be oscillatory
functions of time determined by intrinsic frequencies
of the system

Ve, VV, (Dp, Wy

Furthermore, there is the hierarchy of frequencies

Vo> V,>» o

Parametric enhancement

Parametric resonance if the frequency of modulations of
potentials coincides with eigenfrequency of the probe neutrino




Two effects of enhancement
Phase velocity cancellation:

Rotation of the fields that eliminates the phase from the off-diagonal
terms leads to appearance of phase velocity in the diagonal terms

Vi(t) = V, + V, - cos20 o, - d¢/dt

if do/dt ~V,+V, strong cancellation > matter suppression is removed
Oscillations with maximal depth and frequency 1/V,

Parametric enhancement

V, and V,, - periodic functions

Parametric resonance if the frequency of modulations of
potentials coincides with eigenfrequency of the probe neutrino




Mixing in matter - dynamical variable

S.P. Mikheyev, A.Y.S. 1985

Since H (n,, E) = Hy(E) + V(n,)

the mixing matrix in matter which diagonalizes H (n,, E )
um = Un(n,, E)

depends on energy and density - becomes dynamical variable
in non-uniform medium in contrast to vacuum mixing which is
constant

Inverting relation:
Ve, = U™(n,, E) v;

which means that flavor composition of eigenstates depends on n, and E




Mixing in matter
InlVacuums v v, [in matiers

Ho Qy_

VH Vim Vom

Eigenstates of H in medium

Mixing angle determines flavor content of eigenstates of propagation

Vom

ngh densiTy Resonance.: Iv = IO cos20 Low densiTy
mixing SUppf‘ZSSZd - maximal mixing Vacuum mixing




Hamiltonian for flavor states in matter

In the flavor basis v;=(v,,v)T

U= cosO sinod
“ |l -sin® cosoO

-cos 20 +& sin 20
sin 20 cos 20




Evolution equation for eigenstates

Explicitly for 2v mixing H. .= H. .(n(1)
tot ™~ Tot\''e

Inserting v¢ =U(6,) v, 6,=0._(n.))

0 i g?m of f-diagonal

terms imply
. do, H,. - Hi, transitios

-1 \Y,
dt \ Y2m -
V1m V2m

do, of f-diagonal elements can be neglected
«Hzm - Him no transitions between eigenstates
propagate independently




Adiabaticity

<< HZm

External conditions
H (density) change slowly
Im .
the system has time to
adjust them

Adiabaticity condition dt

transitions between
the neutrino eigenstates v,, €P v,, q
can be neglected

The eigenstates
propagate independently

Crucial in the resonance layer:
- the mixing changes fast
- level splitting is minimal

Adiabaticity condition Argp > | if vacuum mixing is small

Arg = ng tan26 / (dn/dx)g l,=1,/sin26

width of the resonance oscillation length
layer in resonance



Adiabatic parameter

I do,, Adiabaticity condition:
dt y<< 1

'Y:
H2m - Hlm

most crucial in the resonance where _
the mixing angle in matter changes fast | 'R = 2 Ar,

Arg=h,tan26 is the width of the resonance layer

dnr}dx is the scale of density change

|, =1/sin20 is the oscillation length in resonance

Explicitly:




Spatial picture

The picture is universal in terms of variable y = (ny-n)/ Ang
no explicit dependence on oscillation parameters, density distribution, etc.
only initial value y, matters

resonance layer

production

Yo=-95
gsonance

oscillation

>
 a
He)
(]
e
o
C
a
(=]
2
>
T
3
v

averaged
probability

(ng-n)/Ang,  (distance)




Oscillations vs, adiabatic conversion

Oscillations Mallabvatie conversion

Vacuum or uniform medium Non-uniform medium or/and medium
with constant parameters with varying in fime parameters
Phase difference increase Change of mixing in medium =
between the eigenstates change of flavor of the eigenstates

[0, (1)

Phase is
irrelevant

O (E)




Resonance oscillations s, adiabatic conversion
B

Passing through the matter filter

F(E) | Constant density | Monotonously changing
Fo(B) .1 .| density

0.6

0.4

02 / 0.2+

05 1 15 2 25 3

E/E, E/E,




Parametric enhancement in the Earth,1-2 mode

mantle ;

I

/

mantle

tan2912 =0.450, ®=24.9°, E=0.20 GeV
T 7 T T T T 7 T

L 1 1 L I L L

0
position




Conditions for strong transformations

1. Resonance oscillations

Vr V' [> Ve+V, +do/dt - cos20 o, ~ 0
or d¢/dt~-V, -V,

The system oscillate with maximal depth and frequency ~ V'
If there is no significant modulations of the non-diagonal element

2. Adiabatic conversion

Performing series of transformations of fields - exclude
fast time variations in V" and V'

In new frame Vrand V/ may satisfy adigbati¢c condition,—>
strong transition if V' changes from Vr > V' to Vr« V'




X%

. continued

Potentials are modulated by periodic functions, so that the mixing
angle in medium tan26,, = - V'/ V" varies with a period T,

Parametric enhancement if the frequency of modulations
coincides with eigenfrequency of the system 1/T,

To=T,

_ 27
Tp ) \I<Vf‘ >2 4 <\/'>2

<Vr> <V'> - potentials averaged over modulations
Large transition probability develops over many periods




Summation over background neutrinos

Production region

inferaction point

a = e, t -flavor at the production
k - 3 momentum

| - length of trajectory from production

the point of last
inelastic collision

- (a, |, k) characterize a given mode
(x, t), k and | determine (x,, 15)




Total Hamiltonian and potentials

After integration

a cos20 w, + V, + V, sin20 o, + ZVV e“"\ A

H= 3

\Sin29 ®p * 2V, eit cos2b o, - V, - V/V Vv,

Potentials

V, = Jak [dI [V, (1) - Vyr (kDI (L - Poc(k, 1)

Vel = fdk fdn [V, (k, 1) - V.7 (k, D] et\P, (k, T) (1 - P,.(k, 1))

where

Viak D=\26Gen2k, D(1-v,v) a=ze,r
n (k, ) - number density of neutrinos emitted from (x,, 1,)
and arriving at the point (x, t)




Removing the phase

Off-diagonal term: introduce real V' and the phase ¢' as
sin20 o, + 2V, et = V' ei® *)
Transformation of the fields

v = Uy U = diag (e 03¢, 05" )
it does not change flavor probabilities.

Hamiltonian for '

H = %[vr(f) v (f)]
V() - Vi)

Vr(t) = V. +V, - cos20 o, + dp'/dt V' (1) is def. in (*)

Probe neutrino propagation in external neutrino potentials
(as in the case of NSI but) with non-trivial time dependence




The problem

Evolution equation for the probe particle

.do -t - boi -
|2 = H (09) D, x = ct - point along the v, trajectory

Total Hamiltonian depends on the wave functions of all background
neutrinos @, X which cross the probe neutrino tfrajectory in a point x

To find ;X one needs to solve the corresponding evolution equation
for each v,

. d D,
i © = H (D) Dy, y = ct along the v, tfrajectory

Here H depends on the wave functions of all background neutrinos
®,.Y which cross the v;, trajectory in a point y

The equation should be integrated over y from the v, production

point fo x




The problem

Stationary case: pattern
does not depend on time

Modes involved are
characterized by (x5, k, a)
a = e, 1 -flavor at production
Xo - production point

k - momentum

Specific limits of integration
for each point

Modes with the same set (X, k, a) evolve in the same way

Discretize parameters - numerical solutions




Potentials: time dependence

Combining different terms in the
Hamiltonian (in rotating frame)

Loa[V v
TEIVE - v

including usual matter potential
V., which dominates

Ve = 103 O]9

and vacuum terms

Neutrino to matter potential

V.0

3500
3000k
2500+
2000k
1500+
1000F
500k

DQDDD 0.005 0,010 0.015 0,020

1.0
08F -
060
..
w04}
0.2f

[:].[:] | | |
0.000 0,005 0,010 0.015 0,020
fup

V. and V' as functions of the time for
different values of &. A;= 11001, o, = o




Parametric resonance

Dependence of the depth of
parametric oscillations on wy /o,

A,= 11001, V 0= 100 o,
V.0 =100 o,

Parametric resonance condition:

-c0s20 w, + V. + V.0 = Ay A,
. ~ J Rr_/

L) 1)

Freguef\CY of Frequency of
oscillations of the modulations

probe neutrino
determined by the of the
averaged density

potentials

—  Full solution
--  Analytic

10
ety

Width of the resonance
[/ =sin20& (1+Ay)

proportional to &




Inverse problem:

Find potentials and their time dependences or general conditions for
potentials which can lead to effects found in certain simplified
models

Synchronized oscillations

i As parametric effect with increasin
Fast flavor transitions 2z peramerric effect with nereasing
Bi-nolar oscillafions ~ 4s perametric tect for negiaivi

® - transition is the same for
opectral spllfs

neutrinos and antineutrinos
Check how realistic are these conditions in realistic supernova




WP's and non-adiabatic evolution

Partially ionized atoms as the electron density perturbations

Number density profile of electrons in atom (O, C, He) is non adiabatic

M. Kusakabe Interplay of non-adiabatic evolution a'nd
2109.11942 [hep- ph] Separation (relative shift) of the WP's leads to
new effects: additional averaging of oscillations

Applications to Supernova neutrinos

No new effects without WP separation and adiabatic evolution

No new effects for very sharp (step-like) density profile




Evolution of WP's

WP's are formed at the production (at boundaries)

w(t x) = [ dp £(p) 4+ x) ,(t x) - plane waves

If there is no absorption or p-dependent interactions, f(p) does not
change in the process of evolution

Evolution equation idy/dt-Hy =0, inserty(t x):

[dp (p) lido,/dt - Hp, 1= 0

Superposition principle and linearity of evolution equation > solve

eq for ¢,, then integrate over p (which takes care about WP nature)
No effects predicted in 2109.11942 [hep- ph]

In t-x space WP can change form in the course of evolution,
but integrated over time result coincides with result in E-p rep.

Y. P. Porto-Silva, AY S

: , . 2103.10149 [hep-ph]
vv - scattering > H = H (¢,) - non-linear equation ?




