Introduction to high-energy astrophysical neutrinos 13

Mauricio Bustamante Niels Bohr Institute, University of Copenhagen

EuCAPT Astroneutrino Theory Workshop Prague, September 16–20, 2024

VILLUM FONDEN

$$p + p_{\text{target}} \rightarrow \Delta^+ \rightarrow \begin{cases} p + \pi^0, & \text{Br} = 2/3 \\ n + \pi^+, & \text{Br} = 1/3 \end{cases}$$

$$p + p_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \\ \pi^{0} \rightarrow \gamma + \gamma \\ \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu} \\ n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e} \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \overline{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \overline{\nu}_{e}$$

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$

$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \overline{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$

$$n \text{ (escapes)} \rightarrow p + e^{-} + \overline{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

Radio, infrared, optical

Radio, infrared, optical

X-rays & gamma rays

Ultra-high-energy cosmic rays

1896: radioactivity discovered (uranium, radium)

1896: radioactivity discovered (uranium, radium) **1911:** c

1911: cosmic rays discovered

1896: radioactivity discovered (uranium, radium) **1911:**

1911: cosmic rays discovered

1896: radioactivity discovered (uranium, radium) **1911:** cosmi

1911: cosmic rays discovered

1962: ultra-high-energy CRs

1896: radioactivity discovered (uranium, radium) **1911:** cosmic ra

1911: cosmic rays discovered

2013: high-energy neutrinos **1962:** ultra-high-energy CRs

1896: radioactivity discovered (uranium, radium)

1911: cosmic rays discovered

1896: radioactivity discovered (uranium, radium) 1911. cosmic rays discovered

These are the **most energetic** particles in the known Universe

Where do they come from?

2013: high-energy neutrinos 1962: ultra-high-energy CRs

Cosmic rays discovered

The state at the beginning of the 20th century:

(1) ambient radiation was already known to exist(2) believed to be mainly coming from the ground

ambient radiation measured to be lower at the top than at ground level

Problem: they had measured *only* up to ~1 km of altitude

Physics is a risky business

Victor Hess – 1911-1913, balloon flights up to 5.3 km

Physics is a risky business

Victor Hess – 1911-1913, balloon flights up to 5.3 km

"Unknown penetrating radiation" = *cosmic rays* ... and that's one way to get a Nobel Prize in Physics

The cosmic ray spectrum at Earth

The cosmic ray spectrum at Earth

The cosmic ray spectrum at Earth

So what *are* cosmic rays?

Low energies: from the Sun – mostly electrons + protons

Higher energies: from supernovae inside the Milky Way– protons and nuclei

Highest energies: from beyond the Milky Way – protons + heavier nuclei

So what *are* cosmic rays?

Low energies: from the Sun – mostly electrons + protons

Higher energies: from supernovae inside the Milky Way – protons and nuclei We will talk about these

Highest energies: from beyond the Milky Way – protons + heavier nuclei

The UHECR all-particle spectrum

What are they?

Protons and nuclei with energies above 10¹⁷ eV

Is that a lot?

Yes.

10⁵–10⁸ times higher than LHC protons
A 10²⁰-eV proton has the kinetic energy of a kicked football
We know no particles more energetic than UHECRs

So what's making them?

Good question. We don't know.

Whatever it is, it is one of the most violent processes in the Universe

(Ok, fine: extragalactic non-thermal astrophysical sources that act as cosmic particle accelerators)

Why is it so hard?

UHECRs don't travel in straight lines (the Universe is magnetized)

UHECRs are rare (the Universe is opaque to them)

Are we getting closer?

We detect a growing number of UHECRs and

Yes.

we can use neutrinos, too (more on this later)

Redshift	z = 0)
iccubillit	~ 0	

At production: Each source injects UHECRs

Redshift -

UHECR sources distributed in redshift

z = 0

UHECR production

UHECR sources are messy

Astrophysical accelerators *inevitably* make high-energy secondaries

oton. Electron

Fermi acceleration

Average energy of a particle after one crossing: $E = k E_0$

Probability that the particle remains in the acceleration region after one crossing: P

After *n* collisions, $N = N_0 P^n$ particle remain, with energy $E = E_0 k^n$ Energy spectrum: $N(E)dE \propto E^{-1 + \frac{\ln P}{\ln k}} dE$

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{4}{3} \left(\frac{v}{c} \right)$$
 and $P = 1 - P_{\text{esc}} = 1 - \frac{4}{3} \left(\frac{v}{c} \right) \Rightarrow N(E) dE \propto E^{-2} dE$

Hillas criterion

Hillas criterion

UHECR propagation

Calculating the UHECR flux at Earth

Redshift	z = 0)
iccubillit	~ 0	

At production: Each source injects UHECRs

UHECR sources distributed in redshift (*e.g.*, as star-formation rate)

UHECR sources distributed in redshift (e.g., as star-formation rate)

UHECR sources distributed in redshift (e.g., as star-formation rate)

UHECR sources distributed in redshift (e.g., as star-formation rate)

a: Scale factor n_{v} : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

a: Scale factor n_v : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

Solve a propagation equation:

$$\dot{Y}_p = \partial_E (HEY_p) + \partial_E (b_{e^+e^-}Y_p) + \partial_E (b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$

a: Scale factor n_v : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

Solve a propagation equation:

$$\dot{Y}_{p} = \underbrace{\partial_{E}(HEY_{p})}_{e^{+}e^{-}}Y_{p} + \partial_{E}(b_{p\gamma}Y_{p}) + \mathcal{L}_{\mathrm{CR}}$$

Energy loss due to adiabatic cosmological expansion

a: Scale factor n_v : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

JE

Solve a propagation equation:

equation:

$$\dot{Y}_{p} = \partial_{E}(HEY_{p}) + \partial_{E}(b_{e^{+}e^{-}}Y_{p}) + \partial_{E}(b_{p\gamma}Y_{p}) + \mathcal{L}_{CR}$$

Energy loss due to adiabatic cosmological expansion

a: Scale factor n_v : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

dE

Solve a propagation equation:

Energy loss due to adiabatic cosmological expansion

$$Energy loss due to adiabatic pair production: p + \gamma \rightarrow p + e^+ + e^-$$
Energy loss due to adiabatic pair production: p + $\gamma \rightarrow p + e^+ + e^-$

a: Scale factor n_v : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

a: Scale factor n_v : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

a: Scale factor n_v : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

Solve a propagation equation:

 $\dot{Y}_p = \partial_E (HEY_p) + \partial_E (b_{e^+e^-}Y_p) + \partial_E (b_{p\gamma}Y_p) + \mathcal{L}_{CR}$

Recast in terms of redshift using $\frac{dz}{dt} = -(1+z)H(z)$ with Hubble parameter $H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

Solve a propagation equation:

 $\dot{Y}_{p} = \partial_{E}(HEY_{p}) + \partial_{E}(b_{e^{+}e^{-}}Y_{p}) + \partial_{E}(b_{p\gamma}Y_{p}) + \mathcal{L}_{CR}$ Recast in terms of redshift using $\frac{dz}{dz} = (1 + z) H(z)$

$$\frac{dt}{dt} = -(1+z)H(z)$$

with Hubble parameter

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$

 $\partial_z Y_p(E,z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E(H(z)EY_p(E,z)) + \partial_E(b_{e^+e^-}(E,z)Y_p(E,z)) + \partial_E(b_{p\gamma}(E,z)Y_p(E,z)) + \mathcal{L}_{\mathrm{CR}}(E,z) \right\}$

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E, z) = a^3(z)n_p(E, z) = \frac{1}{(1+z)^3}n_p(E, z)$

Solve a propagation equation:

 $\dot{Y}_{p} = \partial_{E}(HEY_{p}) + \partial_{E}(b_{e^{+}e^{-}}Y_{p}) + \partial_{E}(b_{p\gamma}Y_{p}) + \mathcal{L}_{CR}$ Recast in terms of redshift using

$$\frac{dz}{dt} = -(1+z)H(z)$$

with Hubble parameter

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$

 $\partial_z Y_p(E,z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_p(E,z)) + \partial_E (b_{e^+e^-}(E,z)Y_p(E,z)) + \partial_E (b_{p\gamma}(E,z)Y_p(E,z)) + \mathcal{L}_{\mathrm{CR}}(E,z) \right\}$

 \sim Evolve this equation from $z_{\text{max}} \sim 4$ to Earth (z = 0)

$$\partial_z Y_p(E,z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E(H(z)EY_p(E,z)) + \partial_E(b_{e^+e^-}(E,z)Y_p(E,z)) + \partial_E(b_{p\gamma}(E,z)Y_p(E,z)) + \mathcal{L}_{\mathrm{CR}}(E,z) \right\}$$

Cosmic-ray injection by UHECR sources

Each source injects UHECRs with a spectrum (GeV⁻¹ s⁻¹)

The number density of sources evolves with redshift (Mpc⁻³)

$$\partial_z Y_p(E,z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_p(E,z)) + \partial_E (b_{e^+e^-}(E,z)Y_p(E,z)) + \partial_E (b_{p\gamma}(E,z)Y_p(E,z)) + \mathcal{L}_{\mathrm{CR}}(E,z) \right\}$$

Adiabatic cosmological expansion

 $\varepsilon n_{\gamma}(\epsilon, 0) \ [\mathrm{cm}^{-3}]$

The shorter the energy loss length, the faster the UHECR proton loses energy during propagation

2 At each energy, the energy loss length is dominated by the fastest energy-loss process

CIB number density is \ll CMB number density, so there are fewer UHECR interactions on CIB photons ($b_{\text{CIB}} \ll b_{\text{CMB}}$)

Calculating the UHECR flux at Earth

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \rightarrow \Delta \rightarrow \begin{cases} p + \pi^{0} & p + \gamma \\ n + \pi^{0} & \mu \\ n + \pi^{+} & \mu \\ & \downarrow \nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} + e \end{cases}$$

Pair production:

 $p + \gamma \longrightarrow p + e^- + e^+$

Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$E_p \approx \frac{0.16 \text{ GeV}^2}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width: $E_p \approx 5 \cdot 10^{10} \ {\rm GeV}$

Target photon spectra (at z = 0): CMB: Microwave (black body, $<\epsilon > \sim 0.66$ meV)

 $n_{\rm Y}(z) = (1+z)^3 n_{\rm Y}(z=0)$ (exact only for CMB)

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \rightarrow \Delta \rightarrow \begin{cases} p + \pi^{0} & \gamma + \gamma \\ p + \pi^{0} & \mu \\ n + \pi^{+} & \mu \\ \mu + \nu_{\mu} + \nu_{e} + e^{+} \end{cases}$$

Pair production:

 $p + \gamma \rightarrow p + e^- + e^+$

Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$E_p \approx \frac{0.16 \text{ GeV}^2}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width:

 $E_p \approx 5 \cdot 10^{10} \text{ GeV}$

Mean free path:

$$(n_{\gamma} \langle \sigma \rangle_{p\gamma})^{-1} = (413 \text{ cm}^{-3} \times 200 \text{ µbarn})^{-1}$$

$$\approx 10^{25} \text{ cm}$$

$$\approx 4 \text{ Mpc}$$

Energy-loss scale:

 $L = (E/\Delta E)(n_{\gamma} \langle \sigma \rangle_{p\gamma})^{-1}$ $\approx (1/0.2) \times 4 \text{ Mpc}$ $\approx 20 \text{ Mpc}$

A more detailed calculation yields

 $L_{\text{GZK}} \approx 100 \text{ Mpc}$

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \rightarrow \Delta \rightarrow \begin{cases} p + \pi^0 & \\ n + \pi^+ & \\ & \downarrow \nu_\mu + \bar{\nu}_\mu + \nu_e + e^+ \end{cases}$$

Pair production:

 $p+\gamma \longrightarrow p+e^{\scriptscriptstyle -}+e^{\scriptscriptstyle +}$

Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$E_p \approx \frac{0.16 \text{ GeV}^2}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width $E_p \approx 5 \cdot 10^{10} \; {\rm GeV}$

Greisen PRL 1966; Zatsepin & Kuzmin, JETP 1966

The Universe is *also* opaque to PeV gamma rays

Pair production: 1 PeV 1 TeV 10 $\gamma_{\rm astro} + \gamma_{\rm cosmo} \rightarrow e^- + e^+$ 10^{3} Inverse Compton scattering: $e^{\pm} + \gamma_{\rm cosmo} \rightarrow e^{\pm} + \gamma$ 10^{2} This is why we may detect PeV gamma rays cascade down to MeV–GeV: Galactic λ [Mpc] 10 **PeVatrons** E² dN/dE [MeV cm⁻² s⁻¹ sr⁻ Total EGB - o- o- La La 10 10° Distance to Fermi LAT, 50 months, (FG model A) Galactic Center 10⁻²⊧ Fermi LAT, 50 months, (FG model B) 10⁻⁵ เ Fermi LAT, 50 months, (FG model C) Galactic foreground modeling uncertainty Fermi LAT, resolved sources, |b|>20 (FG model A) 10 10^{14} 10^{16} 10⁻⁶ 10^{3} 10^{2} 10^{5} 10^{4}

 10^{6}

Energy [MeV]

 10^{20}

1 EeV

 10^{18}

Energy [eV]

Venters, ApJ 2010

Putting it all together...

$$\partial_z Y_p(E,z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E(H(z)EY_p(E,z)) + \partial_E(b_{e^+e^-}(E,z)Y_p(E,z)) + \partial_E(b_{p\gamma}(E,z)Y_p(E,z)) + \mathcal{L}_{\mathrm{CR}}(E,z) \right\}$$

Evolve numerically from $z_{max} \sim 4$ to Earth (z = 0)

Diffuse UHECR proton flux at Earth (GeV⁻¹ cm⁻² s⁻¹ sr⁻¹):

$$J_p(E) = \frac{c}{4\pi} n_p(E, z=0)$$
 This factor converts density to flux

Minimize the function with respect to $J_{p,0}$ and δ_E

Note: This is a simplified setup; in reality, many flux parameters are jointly varied

Minimize the function with respect to $J_{p,0}$ and δ_E

Note: This is a simplified setup; in reality, many flux parameters are jointly varied

The UHECR all-particle spectrum – more features!

The UHECR all-particle spectrum – more features! $_{\ln(10)}$

15 years of Auger data (2004-2019)!

~215k events above $2.5\times10^{\scriptscriptstyle 18}\,eV$

Use *hybrid* events detected by surface + fluorescence detectors to calibrate

—Allows us to measure energies of other events robustly

CR luminosity density above 5×10^{18} eV: 6×10^{44} erg Mpc⁻³ yr⁻¹ (could be AGN or starburst galaxies)

 $E^2 J(E)$

Two complementary criteria to constrain potential UHECR source classes-

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

Two complementary criteria to constrain potential UHECR source classes-

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

Redshift

UHECR sources distributed in redshift (*e.g.*, as star-formation rate)

z = 0

What about the cosmogenic neutrinos?

Co-evolve UHECRs and cosmogenic neutrinos:

UHECRs:
$$\partial_{z}Y_{p}(E, z) = \frac{-1}{(1+z)H(z)} \{ \partial_{E}(H(z)EY_{p}(E, z)) + \partial_{E}(b_{e^{+}e^{-}}(E, z)Y_{p}(E, z)) + \partial_{E}(b_{p\gamma}(E, z)Y_{p}(E, z)) + \mathcal{L}_{CR}(E, z) \}$$

Neutrinos: $\partial_{z}Y_{\nu}(E, z) = \frac{-1}{(1+z)H(z)} \{ \partial_{E}(H(z)EY_{\nu}(E, z)) + \mathcal{L}_{\nu}(E, z) \}$

Note: We can propagate gamma rays by adding an additional equation for them

The position of the v bump is determined by the $\Delta\text{-resonance}$ production threshold, $E_p E_\gamma \approx 0.2~{\rm GeV}^2~,$

and the relation between neutrino energy and proton energy,

$$E_{\nu} \approx E_p/20$$
.

So the neutrino spectrum peaks at

 $E_{\nu} \approx \frac{0.01 \text{ GeV}}{E_{\gamma}/\text{GeV}}$

Let's put this to test ►

Cosmogenic neutrinos—they come from afar

Use more recent data: UHECR flux measured by Telescope Array

Assume pure-proton flux: UHECR injected spectrum is $Q_{\rm CR}(E) \propto E^{-\gamma} e^{-E/E_{\rm max}}$

Source number density: Evolves with redshift as

 $\mathcal{H}_{\rm CR}(z) \propto (1+z)^m$

Minimize χ^2 function over γ , E_{max} , and m

Heinze, Boncioli, MB, Winter, ApJ 2015

Heinze, Boncioli, MB, Winter, ApJ 2015

X_{max} and UHECR mass composition

- These are general trends, but there are large variations due to systematic and statistical errors (also other experiments differ, *e.g.*, Telescope Array)

UHECRs: more sophisticated models

Use more data: Spectrum + mass composition (X_{max})

Five mass groups: H, He, N, Si, Fe

Add nuclei photodisintegration: During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$A + \gamma \to (A - 1) + \gamma$$

See also: Romero-Wolf & Ave, JCAP 2018 Alves Batista, Almeida, Lago, Kotera, JCAP 2019

UHECRs: more sophisticated models

See also: Romero-Wolf & Ave, JCAP 2018 Alves Batista, Almeida, Lago, Kotera, JCAP 2019

Backup slides

Not to scale

z = 0

z = 0

Scattering on magnetic fields

Jansson & Farrar, ApJ 2012

Scattering on magnetic fields

Galactic $B \sim \mu G$

Galactic deflections of 60-EeV protons

Auger Collab., Astropart. Phys. 2007

Jansson & Farrar, ApJ 2012

Practical matters

How to compute the UHECR spectrum, mass composition, anisotropy?

Write your own code from scratch: Great for learning, gets complicated fast

PriNCe: Fast solver of the transport equation of UHECRs + cosmogenic neutrinos github.com/joheinze/PriNCe

SimProp: Original Monte-Carlo propagator of UHECRs and secondaries, updated augeraq.sites.lngs.infn.it/SimProp

CRPropa: Widely used Monte-Carlo propagator of UHECRs, neutrinos, gamma rays, including magnetic deflection crpropa.desy.de

Others: Hermes (arXiv:1305.4364), TransportCR (sourceforge.net), ...

UHECR detection

Space

Space

p⁺ Incoming cosmic ray

Space

Incoming cosmic ray

Proton in the air

 p^{+}

Atmosphere

Space p⁺ Incoming cosmic ray Proton in the air

Heitler model—simple, but illustrative:

Lower altitude

Heitler model—simple, but illustrative:

Heitler model—simple, but illustrative:

Lower altitude

Heitler model—simple, but illustrative:

Matthews, Astropart. Phys. 2005

Heitler model—simple, but illustrative:

Matthews, Astropart. Phys. 2005

The cascade reaches its maximum size $N = N_{max}$ when all particles have energy E_{C} so that

 $E_0 = E_{\rm C} N_{\rm max}$.

But $N_{\rm max} = 2^{n_{\rm C}}$, so $n_{\rm C} = \ln(E_0/E_{\rm C})/\ln 2$

Number of particles $(e + \gamma)$: $N = 2^n = e^{x/\lambda_{\Gamma}}$ And $X_{\max} = n_{\rm C} d$ is $X_{\max} = \lambda_{\Gamma} \ln(E_0/E_{\rm C})$

Heitler model—simple, but illustrative:

Heitler model—simple, but illustrative:

Heitler model—simple, but illustrative:

Lower altitude

Heitler model—simple, but illustrative:

Heitler model—simple, but illustrative:

Higher altitude

Heitler model—simple, but illustrative:

Higher altitude

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005 - Cascade development stops after $n_{\rm C}$ lengths, when the average pion energy $E_{\rm C}$ is such that the decay length of π^{\pm} is $< \lambda_{\rm I}$

Shower development in the atmosphere Inferring the primary UHECR energy:

Inferring the primary UHECR energy:

Inferring the primary UHECR energy:

Matthews, Astropart. Phys. 2005

Inferring X_{max} :

Lower altitude

Inferring *X*_{max}:

Proton-air interaction length:

 $\lambda_{\rm I} = \sigma_{p-\rm air} \langle m_{\rm air} \rangle$

Lower altitude

Inferring X_{max} :

Inferring X_{max} :

Lower altitude

Inferring X_{max} :

Lower altitude

Inferring X_{max} :

Inferring X_{max} :

X_{max} and UHECR mass composition

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

 X_{max} and UHECR mass composition

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

 X_{max} and UHECR mass composition

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

 X_{max} and UHECR mass composition

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

X_{max} and UHECR mass composition

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

X_{max} and UHECR mass composition

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

X_{max} and UHECR mass composition

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

UHECRs: more sophisticated models

Use more data: Spectrum + mass composition (X_{max})

Five mass groups: H, He, N, Si, Fe

Common maximum rigidity: Max. rigidity is $R_{\text{max}} = E_{\text{max}}/Z$ $Q_Z(E) \propto E^{-\gamma} e^{-E/(ZR_{\text{max}})}$

Add nuclei photodisintegration: During propagation, interaction of nuclei on CMB or EBL breaks them up,

 $A + \gamma \to (A - 1) + \gamma$

Heinze, Fedynitch, Boncioli, Winter, *ApJ* 2019 See also: Romero-Wolf & Ave, *JCAP* 2018 Alves Batista, Almeida, Lago, Kotera, *JCAP* 2019

UHECRs: more sophisticated models

Use more data: Spectrum + mass composition (X_{max})

Five mass groups: H, He, N, Si, Fe

Common maximum rigidity: Max. rigidity is $R_{\text{max}} = E_{\text{max}}/Z$ $Q_Z(E) \propto E^{-\gamma} e^{-E/(ZR_{\text{max}})}$ "Peters cycle"

Add nuclei photodisintegration: During propagation, interaction of nuclei on CMB or EBL breaks them up,

 $A + \gamma \to (A - 1) + \gamma$

Heinze, Fedynitch, Boncioli, Winter, *ApJ* 2019 See also: Romero-Wolf & Ave, *JCAP* 2018 Alves Batista, Almeida, Lago, Kotera, *JCAP* 2019

UHECRs: more sophisticated models

Use more data: Spectrum + mass composition (X_{max})

Five mass groups: H, He, N, Si, Fe

Common maximum rigidity: Max. rigidity is $R_{max} = E_{max}/Z$

 $Q_Z(E) \propto E^{-\gamma} e^{-E/(ZR_{\rm max})}$

Add nuclei photodisintegration: During propagation, interaction of nuclei on CMB or EBL breaks them up,

 $A + \gamma \to (A - 1) + \gamma$

See also: Romero-Wolf & Ave, JCAP 2018 Alves Batista, Almeida, Lago, Kotera, JCAP 2019

1

How do we know that UHECRs have an extragalactic origin?

Their energies are so large that their Larmor radius cannot be contained by the Milky Way

$$R_L = \frac{E_p}{eB} \approx \frac{10^{18} \text{ eV}}{e \times 1 \ \mu \text{G}} \gg 100 \text{ kpc}$$

We can look at the distribution of arrival directions of UHECRs

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

Auger Collab., Science 2017

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

Auger Collab., Science 2017

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

Auger Collab., Science 2017