MEDEX'23

Matrix Elements for the Double beta decay Experiments
Prague, September 4-8, 2023

Shell model neutrinoless double-beta decay NME of ${ }^{136}$ Xe within a statistical approach

Andrei Neacsu (CIFRA \& IFIN-HH)

Sabin Stoica (CIFRA)

Mihai Horoi (Central Michigan University)

Centre International de Formation et de Recherche Avancées en Physique subsidiary of NIMP

The NME problem:
https://link.aps.org/doi/10.1103/PhysRevC.93.024308

light neutrino-exchange $0 v \beta \beta$ NME

heavy neutrino-exchange $0 v \beta \beta$ NME

BSM predictions with different Hamiltonians

FIG. 3. The ratio between the ${ }^{136} \mathrm{Xe}$ half-life and the T_{α} half-lives of several experimentally interesting isotopes, in the case of 12 EFT LNV couplings plus $\eta_{0 N}$. The left to right order of the bars corresponds to up to down order in the Legend. The height of the bars represents the difference between results obtained with different SRC parameterizations. $\eta_{0 N}$ plays a similar role to $\varepsilon_{3}^{R R z(L L z)}$.

FIG. 4. Same as Fig. 3, but for the Strasbourg-Madrid choice of Hamiltonians

Looking for the dominant BSM mechanism through ratios of half-lives

The Solution

Andrei Neacsu - MEDEX '23 - Prague, September 4-8 2023

This year

PHYSICAL REVIEW C 107, 045501 (2023)

Predicting the neutrinoless double- β-decay matrix element of ${ }^{136} \mathrm{Xe}$ using a statistical approach

M. Horoi ${ }^{1},{ }^{1}$ A. Neacsu, ${ }^{2,3}$ and S. Stoica \oplus^{2}
${ }^{1}$ Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
${ }^{2}$ International Center for Advanced Training and Research in Physics (CIFRA), Magurele 077125, Romania
${ }^{3}$ Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele 077125, Romania

(a) (Received 7 February 2023; accepted 10 March 2023; published 17 April 2023)

Andrei Neacsu - MEDEX '23 - Prague, September 4-8 2023

The culprits

1) SVD - C. Qi and Z. X. Xu, Phys. Rev. C 86, 044323 (2012).
2) jj55t - M. Horoi and B. A. Brown, Phys. Rev. Lett. 110, 222502 (2013).
3) GCN5082 - E. Caurier, F. Nowacki, A. Poves, and K. Sieja, Phys. Rev. C 82, 064304 (2010).
3×1000 effective Hamiltonians from random perturbations within the range of $\pm 10 \%$ to their two-body matrix elements (TBME) - the single-particle energies are kept untouched.

The observables

- $2 v \beta \beta$ NME, the energies of the first $2^{+}, 4^{+}$, and 6^{+}states in the parent $\left({ }^{136} \mathrm{Xe}\right)$ and daughter $\left({ }^{136} \mathrm{Ba}\right)$ nuclei,
- $B(E 2)$ 个 transition probabilities for ${ }^{136} \mathrm{Xe}$ and ${ }^{136} \mathrm{Ba}$ to the first 2^{+}states,
- Gamow-Teller transition probability for the transition from ${ }^{136} \mathrm{Xe}$ and from ${ }^{136} \mathrm{Ba}$ to the 1^{+} excited state in ${ }^{136} \mathrm{Cs}$,
- the neutron and proton occupancies for ${ }^{136} \mathrm{Xe}$ and ${ }^{136} \mathrm{Ba}$ above the ${ }^{100} \mathrm{Sn}$ core in the jj55 model space shells.

The number of observables that we calculate for each sample is 24 , including the $0 v \beta \beta$ NME.

 notations and analysis.

Highlights

- energy levels that correlate with each other and, significantly for this study, the $0 \nu \beta \beta$ NME and the $2 v \beta \beta$ NME with $\mathrm{R}=0.8$ in the case of the SVD Hamiltonian; this is inherited by the $\mathrm{BE}(2) \uparrow$-s that depend on the $2+$ states;
- correlations between the $0 v \beta \beta$ NME and the strengths of the parent and daughter Gamow-Teller transitions to the first 1^{+}state in ${ }^{136} \mathrm{Cs}$ are significantly reduced, while the correlation with the $2 v \beta \beta$ NME is very strong (maybe, the product of the GT matrix elements describing transitions to the first 1^{+}state in ${ }^{136} \mathrm{Cs}$ does not significantly contribute to the total sum of all excited 1^{+}states in the intermediate nucleus);
- other observables that have relatively high correlations with the $0 \nu \beta \beta$ NME are the energies of the $2^{+}, 4^{+}$, and 6^{+} states in both ${ }^{136} \mathrm{Xe}$ and ${ }^{136} \mathrm{Ba}$ with the correlators R between 0.64 and 0.78 ;
- $\mathrm{g}_{7 / 2}$ neutron vacancies in ${ }^{136} \mathrm{Ba}$ correlate with the $0 \nu \beta \beta \mathrm{NME}$ at $\mathrm{R}=0.61$;
- proton occupancies of the $\mathrm{h}_{11 / 2}$ orbital in ${ }^{136} \mathrm{Ba}$ correlate with the $0 v \beta \beta \mathrm{NME}$ at $\mathrm{R}=0.55$, while the proton occupancies of the $\mathrm{h}_{11 / 2}$ orbital in ${ }^{136} \mathrm{Xe}$ correlate with the $0 \nu \beta \beta$ NME at $\mathrm{R}=0.53$;
- $B(E 2) \uparrow$ of the ${ }^{136} \mathrm{Xe}$ and ${ }^{136} \mathrm{Ba}$ cases $(\mathrm{R}=0.65)$; PBE2 correlates very strongly with $\mathrm{POPd}(\mathrm{R}=0.9)$ and DOPd ($\mathrm{R}=0.91$), while it anticorrelates significantly with $\operatorname{DOPg} 7(\mathrm{R}=-0.91)$ and $\operatorname{POPg} 7(\mathrm{R}=-0.93)$;
- PBE2 correlations with DOPs1 $(\mathrm{R}=0.74)$ and $\mathrm{DVNh} 11(\mathrm{R}=0.88)$, anticorrelating with $\mathrm{DVNd}(\mathrm{R}=-0.84)$, DVNs1 $(\mathrm{R}=-0.82)$ and the energy levels DE2 $+(\mathrm{R}=-0.79)$, $\mathrm{DE} 4+(\mathrm{R}=-0.88)$, $\mathrm{DE} 6+(\mathrm{R}=-0.84)$;

Statistical Inference based on the Bayesian model averaging

Optimal values and a potential range of error for the $0 v \beta \beta$ NME

$$
P\left(x=M_{0 v}\right)=W_{\mathrm{svd}} P_{\mathrm{svd}}(x)+W_{\mathrm{gcn}} P_{\mathrm{gcn}}(x)+W_{j 5 t} P_{j 5 t}(x),
$$

x is the random value of the $0 v \beta \beta$ NME. The normalized weights W_{k} can be inferred using the statistical distributions of the evidence observables and their correlations with the calculated MOv NME.

In our case, using a standard quenching factor of 0.7 for all GT matrix elements one gets a clearly dominant contribution of the SVD model.
However, we take $W_{s v d}=4 / 6, W_{g c n}=W_{j 5 t}=1 / 6$.

The final $0 v \beta \beta$ NME result

At 90% confidence, the $0 v \beta \beta$ NME lies in the range between 1.55 and 2.65 , with a mean value of about 1.99 and a standard deviation of 0.37

Andrei Neacsu - MEDEX '23 - Prague, September 4-8 2023

