

Search for neutrinoless double beta decay in ^{94,96}Zr isotopes using Cs₂ZrCl₆ crystal scintillators

A. Leoncini ^{1,2}, P. Belli ^{1,2}, R. Bernabei ^{1,2}, F. Cappella ^{3,4}, V. Caracciolo ^{1,2},
 R. Cerulli ^{1,2}, A. Incicchitti ^{3,4}, M. Laubestein ⁵, V. Merlo ^{1,2}, V. Nahorna ⁸,
 S. Nagorny ^{6,7}, S. Nisi ⁵, P. Wang ⁸

 $^{\rm 1}\,$ Dipartimento di Fisica, Università di Roma 'Tor Vergata', I-00133 Rome, Italy

² INFN Sezione di Roma Tor Vergata, I-00133 Rome, Italy

³ INFN Sezione Roma, I-00185 Rome, Italy

⁴ Dipartimento di Fisica, Università di Roma 'La Sapienza', I-00185 Rome, Italy

⁵ INFN Laboratori Nazionali del Gran Sasso, 67100 Assergi (AQ), Italy

⁶ Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Canada

⁷ Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Kingston, Canada

⁸ Department of Chemistry, Queen's University, Kingston, Canada

MEDEX'23 Matrix Elements for Double beta decay Experiments

Prague, 04 – 08 September 2023

September 4 - 8, 2023

Interest in studying the β and 2β decay

- The very accurate determination of the shape of the β spectrum at the end-point, can get information on the neutrino mass with direct and model-independent approach.
- ★ The nuclear matrix elements for the 2ν mode and for the 0ν mode can be **related** to each other through relevant parameters: in the free nucleon interaction, **the** g_A **value is 1.2701**, but, when considering a nuclear decay, there are indications that the phenomenological axial-vector coupling value is reduced at $g_A < 1$, more precisely: $g_A \approx 1.269 \text{ A}^{-0.18}$ or $g_A \approx 1.269 \text{ A}^{-0.12}$, depending on the nuclear model adopted to infer the g_A value.

 2β and single β investigation with various nuclei would shed new light in constraining these and other important modeldependent parameters.

$$\beta^- : {}^A_Z X \to {}^A_{Z+1} Y + e^- + \bar{\nu}_e$$

$$2\nu 2\beta^{-}: {}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}Y + 2e^{-} + 2\bar{\nu}_{e}$$
L conserved
$$0\nu 2\beta^{-}: {}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}Y + 2e^{-}$$
L violated ($\Delta L = 2$) \rightarrow massive Majorana neutrino

$0\nu 2\beta$ searches with non-trivial candidates

Our proposal:

 $0\nu 2\beta$ of ⁹⁶Zr with Cs₂ZrCl₆ scintillators at noncryogenic temperature via "source = detector" experimental approach ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe are struggling with an internal and environmental gamma background, while profiting from welldeveloped crystal production and material purification technologies.

⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd – only ¹⁰⁰Mo is under consideration due to well-developed detector material and its high radiopurity.

⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd are the less studied due to combination of unfavorable experimental conditions specific to each of them.

- Q_{26} (⁹⁶Zr) = **3.35 MeV**
- Favorable from a theoretical point of view $T_{1/2} \sim (Q_{26})^5$
- Reasonable natural isotopic abundance (2.8%)
- About 15 g of enriched ⁹⁶Zr (55%) is available
- New advanced detector material (Cs₂ZrCl₆)
- Crystal production under full control
- Extensive studies of detector properties

Search for 2β decay in ^{94,96}Zr and for ⁹⁶Zr's β decay

Experiment	Transition	T _{1/2} @ 90% C.L. (yr)	Ref.	Technique
ZICOS (Kamioka Observatory, Japan)	⁹⁶ Zr → ⁹⁶ Mo (g.s.)	under construction	[1]	Liquid scintillator
NEMO-3	⁹⁶ Zr → ⁹⁶ Mo (g.s.)	> 9.2×10 ²¹	[2]	Tracking detector
(Frejus, France)		> 1.29×10 ²²	[3]	0
Kimballton Underground Research Facility, (USA)	⁹⁶ Zr → ⁹⁶ Mo (2+1)	> 3.1×10 ²⁰	[4]	HPGe
Collaboration at Frejus, (France)	⁹⁶ Zr → ⁹⁶ Mo (2 ⁺ ₁ , 0 ⁺ ₁ , 2 ⁺ ₂ , 2 ⁺ ₃)	> (2.6 – 7.9) ×10 ¹⁹	[5]	HPGe
Collaboration at LNGS	⁹⁶ Zr → ⁹⁶ Mo (2+1)	> 3.8×10 ¹⁹	[6]	HPGe
Collaboration at LNGS	⁹⁴ Zr → ⁹⁴ Mo (2 ⁺ ₁)	> 2.1×10 ²⁰	[7]	HPGe
TILES (TIFR, Mumbai)	⁹⁴ Zr → ⁹⁴ Mo (2+1)	> 5.2×10 ¹⁹	[8]	HPGe
Kimballton Underground Research Facility (USA)	⁹⁶ Zr → ⁹⁶ Mo (6⁺)	> 2.4×10 ¹⁹	[9]	HPGe

 $\beta\,$ and $2\beta\,$ decay of $\,^{96}{\rm Zr.}$ The decay Q-values and excitation energies of the first three states of Nb are also indicated.

Possibility to study $0\nu 4\beta$ decay of 96 Zr $\rightarrow {}^{96}$ Ru 4

[1] EPS-HEP (2019) 437

[2] NPA 847 (2010) 168

[3] PhD U. Coll. London (2015)

[4] S.W. Finch et W. Tornow, Phys, Rev. C 92 (2015) 045501 [5] J. Phys. G: Nucl. Part. Phys. 22 (1996) 487 [6] C. Arpesella et al. Lett. 27 (I) (1994) 29
[7] E.Celi et al., Eur. Phys. J. C 83 (2023) 396
[8] N. Dokania et al. J. Phys. G: Nucl. Part. Phys. 45 (2018) 075104
[9] S.W. Finch, W. Tornow, Nucl. Inst. Meth. A 806 (2016) 70
[10] J. Heeck and W. Rodejohann, EPL 103 (2013) 32001

The novel Cs₂ZrCl₆ (CZC) crystal scintillator

Some general properties	Cs ₂ ZrCl ₆	
Effective atomic number	46.6	
Density (g/cm ³)	3.4	
Melting point (°C)	850	
Crystal structure	Cubic	
Emission maximum (nm)	450 - 470	
Scintillation time constants (µs)	0.4; 2.7; 12.5*	
Light Yield	up to 41000 photons/MeV**	
Linearity of the energy response	Excellent, down to 100 keV	
Energy resolution (FWHM, %) @ 662 keV	3.5 - 7.0***	
Pulse-shape discrimination ability	Excellent	
Mass fraction of Zr (%)	16	

Produced at Queen's University

CsCl (99.9%) + ZrCl₄ (99.9%) double sublimed Bridgman growth technique

 \emptyset 21.5×60 mm, about 60 g

- * for alpha events at room temperature (Dalton Trans. 2022, 51, 6944-6954)
- ** for gamma quanta at room temperature (article in press)
- *** depends on the crystal quality, surface treatment and readout system

CZC crystal radiopurity

measured with the ultra-low background HP-Ge γ spectrometers of the STELLA facility at LNGS over 700 hours

Low-background measurements at LNGS (Italy)

220 Counts 200

180

160

140

- \checkmark Run 1: 456.5 days of data taking (time-window 80 µs), July 2021 Oct 2022
- ✓ Run 2: 65 days of data taking (extended time-window for t-A analysis, 2 ms), Oct -Dec 2022

DAMA/CRYS setup at LNGS

Cone

FWHM =

Pulse-shape discrimination ability

The difference in scintillation pulse time profile for different type of particles allows for an effective pulse-shape discrimination.

The "mean-time" ($\langle t \rangle$) method [2] was used, and this parameter was determined according to:

$$\langle t \rangle = \sum f(t_k) t_k / \sum f(t_k)$$

where the sum is over the time channels (k), starting from the origin of pulse up to 24 μ s, f(t) is the digitized amplitude (at the time t) of a given signal.

Mean-time for the presented pulses are:

 $\langle t \rangle$ = 7.07 and 8.00 μ s, for alpha and beta/gamma events respectively

Pulse-shape discrimination and background α event selection

Time-Amplitude analysis

65 days of data taking within Oct-Dec 2022 Run 2: (extended time-window 2 ms) To select the sequence of alpha events in ²³⁵U sub-chain: ²²³Ra (Q_{α} = 5979 keV, $T_{1/2}$ = 11.44 d) 39.28% selection eff. ²¹⁹**Rn** (Q_{α} = 6946 keV, $T_{1/2}$ = 3.96 s) ²¹⁵**Po** (Q_{α} = 7526 keV, $T_{1/2}$ = 1.782 ms) ²¹¹Pb A(²²⁷Ac) = **1.4(2)** mBq/kg in cone = 2.7(2) mBq/kg in cylinder

- *Confirmation of ²³⁵U decay chain presence*
- + Alpha peaks to precisely determine α/β ratio

Background model

Cone:

Cylinder:

Chain	Nuclide	Internal contamination, mBq/kg		
		Cone	Cylinder	
²³² Th	²³² Th	0.07(2)	0.28(7)	
	²²⁸ Th	0.05(2)	0.44(4)	
²³⁵ U	²³⁵ U	0.29(4)	3.0(1)	
	²³¹ Pa	21.0(3)	33.9(3)	
	²²⁷ Ac	0.70(3)	1.08(3)	
²³⁸ U	²³⁸ U	0.53(4)	1.17(5)	
	²³⁴ U	0.2(1)	3.8(1)	
	²³⁰ Th	0.23(7)	< 0.02	
	²²⁶ Ra	0.03(3)	0.12(3)	
	²¹⁰ Pb	2.2(2)	6.7(3)	
	⁴⁰ K	6(1)	5(1)	
	¹³⁴ Cs	36(4)	42(2)	
	¹³⁵ Cs	267(4)	289(2)	

• Comply with measurements on HPGe

• High contamination by ²³⁵U daughters

Segregation of impurities is observed

Simulated response functions of CZC crystals to 2β processes

Simulated response functions of CZC crystals to single β decay of 96 Zr

Experimental limits on various decay modes in ^{94,96}Zr isotopes

Transition	Decay mode	Final state of daughter nucleus, keV	Experimental limit on T _{1/2} at 90%C.L., yr
96 Zr \rightarrow 96 Mo	0ν2β	g.s.	> 1.5×10 ²⁰
		2 ₁ +, 778	> 1.5×10 ¹⁹
	2ν2β	g.s.	> 7.4×10 ¹⁷
		2 ₁ +, 778	> 3.8×10 ¹⁷
	β	g.s.	> 1.0×10 ¹⁷
94 Zr \rightarrow 94 Mo	0ν2β	g.s.	> 2.6 ×10 ¹⁹
		2 ₁ +, 871	> 3.8×10 ¹⁸
	2ν2 β	g.s.	> 2.4×10 ¹⁸
		2 ₁ +, 871	> 1.9×10 ¹⁷

See more details in Eur. Phys. J. A 59 (2023) 176 https://doi.org/10.1140/epja/s10050-023-01090-9

New low-background measurements in DAMA/CRYS setup (LNGS)

- Three new Cs₂ZrCl₆ crystals (more crystals are under production)
- Total mass = 59.5 g
- FWHM = 6-8% @ 662keV
- Produced from high purity and purified raw materials (> 99.99%)
- Crystals are encapsulated in a silicon-base resin + quartz window
- Modified experimental setup
- Measurements started in June 30th, 2023

Conclusions

• First experiment based on Cs_2ZrCl_6 scintillating crystals aiming to study 2 β decay processes of ^{94,96}Zr isotopes within the "source = detector" approach was successfully realized.

• Despite a very limited mass of the Cs_2ZrCl_6 detector (about 35 g) the experimental limits were established at the level of $10^{17}-10^{20}$ yr, depending on the decay mode.

• A new experiment is ongoing with new Cs_2ZrCl_6 crystals (59.5 g) in an optimized geometry aiming to reach experimental sensitivity more than 10^{21} yr.

• Extensive studies of Cs₂ZrCl₆ crystal scintillating performance, nonproportionality, internal and cosmogenically induced background, crystal lattice characteristics and phonon propagation properties, material handling and machining are on-going.

• Cs₂ZrCl₆ crystal scintillators provide a unique opportunity to study rare decays of Zr isotopes and retrieve important information as g_A , shape of β and 2β energy spectrum, matrix elements, etc..