EuCAPT Astroneutrino Theory Workshop 2021 Prague, Czech Republic, September 20 – October 1, 2021

Massive Neutrinos andNeutrinoless Double Beta Decay Fedor Šimkovic

I. Introduction (Majorana v's)
II. A generation of neutrino mass, 0vββ-decay mechanisms (QCSS scenario, LR symmetric model)
III. The 0vββ-decay NMEs – Current status (deformation, SU(4) symmetry, ab initio...)
IV. Quenching of g_A (theory and experimental indications, novel approach for effective g_A)
V. Outlook

Acknowledgements: P. Vogel (Caltech), S. Kovalenko (Valparaiso U.), M. Krivoruchenko (ITEP Moscow), A. Faessler (Tuebingen), D. Štefánik, R. Dvornický (Comenius U.), A. Babič, A. Smetana (IEAP CTU Prague), F.F. Deppisch (Imperial College London), L. Graf (MPI Heidelberg), ...

Around 1637, Fermat wrote in the margin of a book that the more general equation $a^n + b^n = c^n$ had no solutions in positive integers if *n* is an integer greater than 2.

After 358 years

The corrected proof was published by Andrew Wiles in 1995.

termat's equation: $X^{n} + y^{n} = Z^{n}$ This equation has no solutions in integers for $n \ge 3$.

9/29/2021

Majorana fermion

https://en.wikipedia.org/wiki/File:Ettore_Majorana.jpg

CNNP 2018, Catania, October 15-21, 2018

TEORIA SIMMETRICA DELL'ELETTRONE E DEL POSITRONE

Nota di ETTORE MAJORANA

Symmetric Theory of Electron and Positron Nuovo Cim. 14 (1937) 171

Sunto. - Si dimostra la possibilità di pervenire a una piena simmetrizzasione formale della teoria quantistica dell'elettrone e del positrone facendo uso di un nuovo processo di quantizzazione. Il significato delle equazioni di DIRAC ne risulta alquanto modificato e non vi è più luogo a parlare di stati di energia negativa; nè a presumere per ogni altro tipo di particelle, particolarmente neutre, l'esistenza di « antiparticelle » corrispondenti ai « vuoti » di energia negativa.

L'interpretazione dei cosidetti « stati di energia negativa » proposta da DIRAC (¹) conduce, come è ben noto, a una descrizione sostanzialmente simmetrica degli elettroni e dei positroni. La sostanziale simmetria del formalismo consiste precisamente in questo, che fin dove è possibile applicare la teoria girando le difficoltà di convergenza, essa fornisce realmente risultati del tutto simmetrici. Tuttavia gli artifici suggeriti per dare alla teoria una forma simmetrica

che si accord sia perchè s _____ perchè la siz _____ procedimenti _____ bilmente dov -

isfacenti; trica, sia iante tali :he possinuova via

che conduce più direttamente alla meta.

Per quanto riguarda gli elettroni e i positroni, da essa si può veramente attendere soltanto un progresso formale; ma ci sembra importante, per le possibili estensioni analogiche, che venga a cadere la nozione stessa di stato di energia negativa. Vedremo infatti che è perfettamente possibile costruire, nella maniera più naturale, una teoria delle particelle neutre elementari senza stati negativi.

9/29/2021

Fedor Si

(4) P. A. M. DIRAC, & Proc. Camb. Phil. Soc. 5, 80, 150, 1924. V. anche W. HEISENBERG, & ZS. f. Phys. 5, 90, 209, 1934.

Nuclear double-β decay (even-even nuclei, pairing int.)

Nuovo Cim. 14, 322 (1937) Phys. Rev. 56, 1184 (1939) Neutrinoless double- β decay – LN violated (A,Z) \rightarrow (A,Z+2) + e⁻ + e⁻ (Furry 1937) Not observed yet. Requires massive Majorana v's

80

70

After 90/64 years we know

Fundamental V properties

No answer yet

3 families of light (V-A) neutrinos: ν_e, ν_µ, ν_τ
ν are massive: we know mass squared differences
relation between flavor states and mass states (neutrino mixing)

- Are v Dirac or Majorana?
- •Is there a CP violation in v sector?
- Are neutrinos stable?
- What is the magnetic moment of v?
- Sterile neutrinos?
- Statistical properties of v? Fermionic or partly bosonic?

Currently main issue

Nature, Mass hierarchy, CP-properties, sterile v

The observation of neutrino oscillations has opened a new excited era in neutrino physics and represents a big step forward in our knowledge of neutrino properties

Estimated KATRIN Sensitivity

$0\nu\beta\beta$ –half lives for NH and IH with included uncertainties in NMEe

Collaboration	Isotope	After 84 years	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF ₂ crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	$\sim ton$	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Complete
GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
LEGEND	Ge-76	Point contact with active veto	~ ton	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
LUMINEU (CUPID)	Mo-100	ZnMoO4 / Li2MoO4 scint. bolometer	1.5 - 5 kg	R&D
COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Construction
EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
KamLAND2-Zen	Xe-136	2.7% in liquid seint.	750 kg	Upgrade
NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
NEXT-100	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
PandaX - III	Xe-136	High pressure Xe TPC	\sim ton	R&D
DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

A generation of Majorana neutrino mass, 0vββ-decay mechanisms

Standard Model (an astonishing successful theory, based on few principles)

Neutrino is a special particle in SM:

- It is the only fermion that does not carry electric charge (like bosons γ , g, H^0) !
- In the SM, the only left-handed neutrinos v_L appears in the theory.
- One cannot obtain a mass for v_L with any renormalizable coupling with the Higgs fields through SSB.

However, we know that v's do have mass from the v-oscillation experiments! => Thus the neutrino mass indicates that there is something new = **BSM physics**!

•

CERNCOURSER

VOLUME 57 NUMBER 9 NOVEMBER 2017

Weinberg, 1979: d=5

 $0\nu\beta\beta$ decay:

 $\mathcal{O}_W \propto \frac{c_{ij}}{\Lambda} (L_i H) (L_j H)$

. Weinberg does not take credit for

predicting neutrino masses, but he thinks it's the right interpretation. What's more, he says, the non-renormalisable interaction that produces the neutrino masses is probably also accompanied with non-renormalisable interactions that produce proton decay and other things that haven't been observed, such as violation of baryon-number conservations. "We don't know anything about the details of those terms, but I'll swear they are there."

9/29/2021

$$\mathcal{L} = \mathcal{L}_{SM}^{(4)} + rac{1}{\Lambda} \sum_{i} c_i^{(5)} \mathcal{O}_i^{(5)} + rac{1}{\Lambda^2} \sum_{i} c_i^{(6)} \mathcal{O}_i^{(6)} + O(rac{1}{\Lambda^3})$$

╋

Beyond the SM physics

Amplitude for (A,Z)→(A,Z+2)+2e⁻ can be divided into:

mass mechanism: d=5

 $\mathcal{O}_W \propto \frac{c_{ij}}{\Lambda} (L_i H) (L_j H)$

Weinberg, 1979

long range: d=7

 $\mathcal{O}_2 \propto LLLe^c H$ $\mathcal{O}_3 \propto LLQd^c H$ $\mathcal{O}_4 \propto LL\bar{Q}\bar{u}^c H$ $\mathcal{O}_8 \propto L\bar{e}^c \bar{u}^c d^c H$

Babu, Leung: 2001 de Gouvea, Jenkins: 2007

short range: d=9 (d=11)

+

 $\mathcal{O}_{5} \propto LLQd^{c}HHH^{\dagger}$ $\mathcal{O}_{6} \propto LL\bar{Q}\bar{u}^{c}HH^{\dagger}H$ $\mathcal{O}_{7} \propto LQ\bar{e}^{c}\bar{Q}HHH^{\dagger}$ $\mathcal{O}_{9} \propto LLLe^{c}Le^{c}$ $\mathcal{O}_{10} \propto LLLe^{c}Qd^{c}$ $\mathcal{O}_{11} \propto LLQd^{c}Qd^{c}$

Valle

Quark Condensate Seesaw Mechanism for Neutrino Mass

A. Babič, S. Kovalenko, M.I. Krivoruchenko, F.Š., arXive:1911.12189

The SM gauge-invariant effective operators

 $\mathcal{O}_7^{u,d} = \frac{\tilde{g}_{\alpha\beta}^{u,d}}{\Lambda^3} \overline{L_\alpha^C} \, L_\beta \, H\left\{ (\overline{Q} \, u_R), \, (\overline{d_R} \, Q) \right\}$

After the EWSB and ChSB one arrives at the Majorana mass matrix of active neutrinos

$$m_{\alpha\beta}{}^{\nu} = g_{\alpha\beta} v \frac{\langle \overline{q}q \rangle}{\Lambda^3} \\ = g_{\alpha\beta} v \left(\frac{\omega}{\Lambda}\right)^3$$

Y

$$g_{\alpha\beta} = g^{u}_{\alpha\beta} + g^{d}_{\alpha\beta}, \quad v/\sqrt{2} = \langle H^{0} \rangle$$
$$\omega = -\langle \overline{q}q \rangle^{1/3}, \quad \langle \overline{q}q \rangle^{1/3} \approx -283 \,\mathrm{MeV}$$

This operator contributes to the Majorana-neutrino mass matrix due to chiral symmetry breaking via the light-quark condensate.

Spontaneous breaking of *chiral (χ) symmetry*

we get the neutrino mass in the sub-eV ballpark The literature lacks the limits on this class of non-standard interactions

 $|\varepsilon_{e\mu}|$

 10^{-2}

 10^{-3}

 $|\varepsilon_{ee}|$

KamLAND–Zen

The genuine QCSS scenario with no fine-tuning

A. Babič, S. Kovalenko, M.I. Krivoruchenko, F.Š, arXiv: 1911.12189 [hep-ph]

If $0\nu\beta\beta$ is observed the ν is a Majorana particle

Majorana $m_v \Longrightarrow 0v\beta\beta$

 $0\nu\beta\beta \Longrightarrow$ Majorana m_{ν}

Schechter, Valle: PRD 1982

Different 0vββ-decay scenarios

Left-handed neutrinos: Majorana neutrino mass eigenstate N with arbitrary mass m_N

Faessler, Gonzales, Kovalenko, F. Š., PRD 90 (2014) 096010]

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}g_{\rm A}^4 \left| \sum_{\rm N} \left(U_{e\rm N}^2 m_{\rm N} \right) m_{\rm p} M'^{0\nu}(m_{\rm N}, g_{\rm A}^{\rm eff}) \right|^2$$

General case

$$\begin{aligned}
 Ight v exchange \\
 M'^{0\nu}(m_{\rm N}, g_{\rm A}^{\rm eff}) &= \frac{1}{m_{\rm p}m_{\rm e}} \frac{R}{2\pi^2 g_{\rm A}^2} \sum_n \int d^3x \, d^3y \, d^3p \\
 \times e^{i_{\rm P} \cdot (\mathbf{x} - \mathbf{y})} \frac{\langle 0_F^+ | J^{\mu\dagger}(\mathbf{x}) | n \rangle \langle n | J^{\dagger}_{\mu}(\mathbf{y}) | 0_I^+ \rangle}{\sqrt{p^2 + m_N^2} (\sqrt{p^2 + m_N^2} + E_n - \frac{E_I - E_F}{2})} M'^{0\nu}(m_{\rm N} \to \infty, g_{\rm A}^{\rm eff}) &= \frac{1}{m_{\rm N}^2} M'^{0\nu}_{\rm N}(g_{\rm A}^{\rm eff}) \\
 heavy v exchange
 \end{aligned}$$

Particular cases

$$\begin{split} [T_{1/2}^{0\nu}]^{-1} &= G^{0\nu} g_{\mathrm{A}}^{4} \times \\ &\times \begin{cases} \left| \frac{\langle m_{\nu} \rangle}{m_{\mathrm{e}}} \right|^{2} \left| M_{\nu}^{\prime 0\nu} (g_{\mathrm{A}}^{\mathrm{eff}}) \right|^{2} & \text{for } m_{\mathrm{N}} \ll p_{\mathrm{F}} \\ \left| \langle \frac{1}{m_{\mathrm{N}}} \rangle m_{\mathrm{p}} \right|^{2} \left| M_{\mathrm{N}}^{\prime 0\nu} (g_{\mathrm{A}}^{\mathrm{eff}}) \right|^{2} & \text{for } m_{\mathrm{N}} \gg p_{\mathrm{F}} \end{cases} \begin{pmatrix} \langle m_{\nu} \rangle = \sum_{\mathrm{N}} U_{\mathrm{eN}}^{2} m_{\mathrm{N}} \\ \left| \frac{1}{m_{\mathrm{N}}} \rangle m_{\mathrm{p}} \right|^{2} \left| M_{\mathrm{N}}^{\prime 0\nu} (g_{\mathrm{A}}^{\mathrm{eff}}) \right|^{2} & \text{for } m_{\mathrm{N}} \gg p_{\mathrm{F}} \end{split}$$

9/29/2021

Fedor Simkovic

Faessler, Gonzales, Kovalenko, F. Š., PRD 90 (2014) 096010]

Interpolating formula is justified by practically no dependence <p²> on A

A. Babič, S. Kovalenko, M.I. Krivoruchenko, F.Š., PRD 98, 015003 (2018)

and nuclear physics uncertainties in $0\nu\beta\beta$ -decay E. Lisi, A. Rotunno, F.Š., PRD 92, 093004 (2018)

ISM

StMa

ISM

CMU

IBM

QRPA

TBC

QRPA

Jy

PHFB

CDFT

MeV

The 0vββ-decay within L-R symmetric theories (interpolating formula)

(D-M mass term, see-saw, V-A and V+A int., exchange of heavy neutrinos)

A. Babič, S. Kovalenko, M.I. Krivoruchenko, F.Š., PRD 98, 015003 (2018)

$$\begin{split} [T_{1/2}^{0\nu}]^{-1} &= \eta_{\nu N}^2 \ C_{\nu N} \\ \text{Mixing of light and heavy neutrinos} \\ \mathcal{U} &= \begin{pmatrix} U & S \\ T & V \end{pmatrix} \\ \text{Effective LNV parameter within LRS model} \\ (\text{due interpolating formula}) \\ \end{split} \\ \begin{aligned} &= \begin{pmatrix} D & S \\ T & V \end{pmatrix} \\ \text{Effective LNV parameter within LRS model} \\ (\text{due interpolating formula}) \\ \end{aligned} \\ \begin{aligned} &= \begin{pmatrix} p^2 \\ p^2 \end{pmatrix} = m_p m_e \frac{M_N^{0\nu}}{M_\nu^{0\nu}} \\ \\ &= \begin{pmatrix} m_p m_e \frac{M_N^{0\nu}}{M_\nu^{0\nu}} \\ \frac{M_{\nu N}^{0\nu}}{M_\nu^{0\nu}} \\ \end{bmatrix} \\ \\ &= \begin{pmatrix} m_p m_e \frac{M_N^{0\nu}}{M_\nu^{0\nu}} \\ \frac{M_{\nu N}^{0\nu}}{M_\nu^{0\nu}} \\ \\ &= \begin{pmatrix} m_p m_e \frac{M_N^{0\nu}}{M_\nu^{0\nu}} \\ \frac{M_{\nu N}^{0\nu}}{M_\nu^{0\nu}} \\ \frac{M_{\nu N}^{0\nu}}{M_\nu^{0\nu}} \\ \\ &= \begin{pmatrix} m_p m_e \frac{M_N^{0\nu}}{M_\nu^{0\nu}} \\ \frac{M_{\nu N}^{0\nu}}{M_\nu^{0\nu}} \\ \frac{M_{\nu N}^{0$$

6x6 PMNS see-saw ν-mixing matrix (the most economical one, prediction for mixing of heavy neutral leptons)

6x6 neutrino mass matrix

= 1

$$\mathcal{U} = \left(egin{array}{cc} U & S \ T & V \end{array}
ight)$$
 Basis $(
u_L, (N_R)^c)^T$ $\mathcal{M} = \left(egin{array}{cc} M_L & M_D \ M_D & M_R \end{array}
ight)$

6x6 matrix: 15 angles, 10+5 CP phases **3x3 matrix:** 3 angles, 1+2 CP phases

3x3 block matrices U, S, T, V are generalization of PMNS matrix

Assumptions:

i) the see-saw structure

ii) mixing between different generations is neglected

$$MNS = \begin{pmatrix} U_{PMNS} & \zeta \mathbf{1} \\ -\zeta \mathbf{1} & U_{PMNS}^{\dagger} \end{pmatrix}$$

 $\zeta = -\frac{m_{\rm D}}{m_{\rm D}}$

$$\mathcal{U}_{\mathrm{PMNS}} \; \mathcal{U}_{\mathrm{PMNS}}^{\dagger} = \mathcal{U}_{\mathrm{PMNS}}^{\dagger} \; \mathcal{U}_{\mathrm{PMNS}}$$

see-saw parameter

 \mathcal{U}_{P}

6x6 matrix: 3 angles, 1+2 CP phases, 1 see-saw par.

9/29/2021

6x6 PMNS see-saw v-mixing matrix $\mathcal{U} = \begin{pmatrix} U_0 & \zeta \mathbf{1} \\ -\zeta \mathbf{1} & V_0 \end{pmatrix}$ (the most economical one)

$$U_{0} = U_{\text{PMNS}}$$
A. Babič, S. Kovalenko, M.I. Krivoruchenko, F.Š., PRD 98, 015003 (2018)

$$V_{0} = U_{\text{PMNS}}^{\dagger} = \begin{pmatrix} c_{12} c_{13} e^{-i\alpha_{1}} & (-s_{12} c_{23} - c_{12} s_{13} s_{23} e^{-i\delta}) e^{-i\alpha_{1}} & (s_{12} s_{23} - c_{12} s_{13} c_{23} e^{-i\delta}) e^{-i\alpha_{1}} \\ s_{12} c_{13} e^{-i\alpha_{2}} & (c_{12} c_{23} - s_{12} s_{13} s_{23} e^{-i\delta}) e^{-i\alpha_{2}} & (-c_{12} s_{23} - s_{12} s_{13} c_{23} e^{-i\delta}) e^{-i\alpha_{2}} \\ s_{13} e^{i\delta} & c_{13} s_{23} & c_{13} c_{23} \end{pmatrix}$$

Assumption about heavy neutrino masses M_i (by assuming see-saw)

 $m_i M_i \simeq m_D^2$ **Inverse** proportional **Proportional**

Heavy Majorana mass $M^{R}_{\beta\beta}$ depends on the "Dirac" CP violating phase δ^{-6}

A. Babič, S. Kovalenko, M.I. Krivoruchenko, F.Š., PRD 98, 015003 (2018)

The 0vββ-decay NMEs – current status

Fedor Simkovic

2004 (factor 10) few groups, 2 nuclear structure methods: Nuclear Shell Model, QRPA

2019 (factor 2-3) many groups, many nuclear structure methods: Nuclear Shell Model, QRPA, Interacting Boson Model, Energy Density Functional

Attempts (light nuclear systems): Ab initio calculations by different approaches – No Core Shell Model, Green's Function Monte Carlo, Coupled Cluster Method, Lattice QCD

Nuclear Shell Model (Madrid-Strasbourg, Michigan, Tokyo): Relatively small model space (1 shell), all correlations included, solved by direct diagonalization *QRPA* (Tuebingen-Bratislava-Calltech, Jyvaskyla, Chapel Hill, Lanzhou, Prague): Several shells, only simple correlations included *Interacting Boson Method* (Yale-Concepcion): Small space, important proton-neutron Pairing correlations missing *Energy Density Functional theory* (Madrid, Beijing): >10 shells, important proton-neutron pairing missing

0 vββ decay

NMEs

Ab Initio Nuclear Structure (Often starts with chiral effective-field theory)

Energy (MeV)

Degrees of Freedom

Nucleons, pions. Sufficient below chiral symmetry breaking scale. Expansion of operators in power of Q/Λ_{χ} . $Q=m_{\pi}$ or typical nucleon momentum.

unquenched g_A

Quenching of
$$g_A (q = g^{eff}_A / g^{free}_A)$$

Should g_A be quenched in medium? Missing wave-function correlations Renormalized operator? Neglected two-body currents? Model-space truncations?

Quenching in nuclear matter: $g^{eff}{}_{A} = q g^{free}{}_{A}$

 $g_V = 1$ at the quark level $g_V = 1$ at the nucleon level $g_V = 1$ inside nuclei

 $g_A = 1$ at the quark level $g^{free}{}_A = 1.27$ at the nucleon level $g^{eff}{}_A = ?$ inside nuclei

ISM: $(g^{eff}_{A})^{4} \simeq 0.66 \ (^{48}Ca), \ 0.66 \ (^{76}Ge), \ 0.30 \ (^{76}Se), \ 0.20 \ (^{130}Te) \ and \ 0.11 \ (^{136}Xe)$ QRPA: $(g^{eff}_{A})^{4} = 0.30 \ and \ 0.50 \ for \ ^{100}Mo \ and \ ^{116}Cd$ IBM: $(g^{eff}_{A})^{4} \simeq (1.269 \ A^{-0.18})^{4} = 0.063$ Faessler, Fogli, Lisi, Rodin, Rotunno, F. Š, J. Phys. G 35, 075104 (2008).

Quenching of g_A -IBM ($T_{1/2}^{0\nu}$ suppressed up to factor 50)

 $(g^{eff}{}_{A})^{4} \simeq (1.269 \text{ A}^{-0.18})^{4} = 0.063$ (The Interacting Boson Model). This is an incredible result. The quenching of the axial-vector coupling within the IBM-2 is more like 60%.

It has been determined 1.4 by theoretical prediction 1.2 for the 2vββ-decay halflives, which were based 1.0on within closure 0.8 $g_{A, {
m eff}}$ approximation calculated Ca Ge Se 0.6 **Corresponding NMEs,** 0.4 with the measured half-lives. 0.2

9/29/2021

J. Barea, J. Kotila, F. Iachello, PRC 87, 014315 (2013).

Discrepancy between experimental and

theoretical β -decay rates resolved from

Ab initio calculations (light nuclear systems) including mesonexchange currents do not need any "quenching"

first principles $\left[\begin{array}{c} \pi,\rho,\omega \\ \end{array} \right] \overbrace{\pi,\rho,\omega}^{\overline{N}}$ π, ρ, ω Δ, N^* \implies π π π π c_1, c_3, c_4 C_D c_E c_3, c_4 c_D а 3 $^{19}\text{Ne}_{1/2} \rightarrow {}^{19}\text{F}_{1/2}$ b ${}^{42}\text{Sc}_7 \rightarrow {}^{42}\text{Ca}_6$ 3 This work This work $^{37}K_{3/2} \rightarrow ^{37}Ar_{5/2}$ $^{42}\text{Ti}_{0} \rightarrow ^{42}\text{Sc}_{1}$ Shell model Shell model $^{25}\text{Al}_{5/2} \rightarrow ^{25}\text{Mg}_{5/2}$ ${}^{45}V_{7/2} \rightarrow {}^{45}Ti_{7/2}$ $^{37}K_{3/2} \rightarrow ^{37}Ar_{3/2}$ - q = 12 q = 1 ${}^{45}\text{Ti}_{7/2} \rightarrow {}^{45}\text{Sc}_{7/2}$ $^{26}Na_3 \rightarrow ^{26}Mg_2$ 2 $|M_{\rm GT}|$ experiment *M_{GT}* experiment q = 0.96(6)q = 0.92(4) $^{30}Mg_0 \rightarrow ^{30}Al_1$ q = 0.80(2) $^{43}Sc_{7/2} \rightarrow {}^{43}Ca_{5/2}$ q = 0.75(3) $^{28}Al_3 \rightarrow ^{28}Si_2$ $^{45}V_{7/2} \rightarrow {}^{45}Ti_{5/2}$ $^{24}Ne_0 \rightarrow ^{24}Na_1$ ${}^{47}V_{3/2} \rightarrow {}^{47}Ti_{5/2}$ 1 $^{34}P_1 \rightarrow ^{34}S_0$ $^{47}Sc_{7/2} \rightarrow {}^{47}Ti_{7/2}$ $^{33}P_{1/2} \rightarrow ^{33}S_{3/2}$ ${}^{45}\text{Ti}_{7/2} \rightarrow {}^{45}\text{Sc}_{7/2}$ $^{24}Na_4 \rightarrow ^{24}Mg_4$ $^{34}P_1 \rightarrow ^{34}S_0$ ${}^{46}\text{Sc}_4 \rightarrow {}^{46}\text{Ti}_4$ 0 0 2 3 0 2 3 1 $|M_{GT}|$ theory (unquenched) $|M_{GT}|$ theory (unquenched)

physics

Improved description of the $0\nu\beta\beta$ -decay rate (and novel approach of fixing g_A^{eff})

F. Š, R. Dvornický, D. Štefánik, A. Faessler, PRC 97, 034315 (2018).

The g_A^{eff} can be deterimed with measured half-life and ratio of NMEs and calculated NME dominated by transitions through low lying states of the intermediate nucleus (ISM)

9/29/

The running sum of the $2\nu\beta\beta$ -decay NMEs (QRPA)

ξ_{13} tell us about importance of higher lying states of int. nucl.

0 6

500

1000

1500

2000

2500

300 E, keV

from the shape of energy distributions of emitted electrons

Quenching of g_A , two-body currents and QRPA (Suppression of the $0\nu\beta\beta$ -decay NME of about 20%)

But, a strong suppression of $2\nu\beta\beta$ -decay half-life, $(g_A^{eff} = g_A\delta(p=0) = 0.7-1.0)$

Muon capture rates evaluated within QRPA

F. Š, R. Dvornický, P. Vogel, PRC 102, 034301 (2020).

TABLE I. The coefficients C_F , C_{GT} , and C_T [see Eq. (23)] calculated within the present approach [see Eq. (18)] and in the Fujii-Primakoff approximation [see Eq. (19)].

E_{ν}		present approach			Fujii-Primakoff		
(MeV)	$g_A^{\rm eff}$	C_F	C_{GT}	C_T	C_F	C_{GT}	C_T
75	0.80	0.976	0.797	-0.241	1.054	1.165	-0.333
	1.00	0.976	0.821	-0.197	1.054	1.091	-0.296
	1.27	0.976	0.847	-0.158	1.054	1.030	-0.265
85	0.80	0.965	0.805	-0.239	1.052	1.203	-0.359
	1.00	0.965	0.823	-0.197	1.052	1.117	-0.317
	1.27	0.965	0.844	-0.159	1.052	1.048	-0.282
95	0.80	0.955	0.818	-0.234	1.051	1.241	-0.385
	1.00	0.955	0.828	-0.195	1.051	1.145	-0.337
	1.27	0.955	0.844	-0.159	1.051	1.067	-0.298

New formalism (derivation as by 0νββ-decay

$$\Gamma = m_{\mu} \frac{\left(G_{\beta} m_{\mu}^2\right)^2}{2\pi} \times \left(g_A^{\text{eff}}\right)^2 \left(C_F \frac{B_{\Phi F}}{(g_A^{\text{eff}})^2} + C_{GT} B_{\Phi GT} + C_T B_{\Phi T}\right)$$

$$B^{k}_{\Phi K}(p_{\nu_{k}}) = \frac{1}{\hat{J}_{i}} \sum_{M_{i}M_{k}} \int \frac{d\Omega_{\nu}}{4\pi}$$
$$\times |\langle J_{k}M_{k}| \sum_{j=1}^{A} \tau_{j}^{-} e^{i\mathbf{p}_{\nu_{k}}\cdot\mathbf{r}_{i}} O_{K} \frac{\Phi_{g}(r_{i})}{m_{\mu}^{3/2}} |J_{i}M_{i}\rangle|^{2}$$

In agreement with soft quenching Zinner, Langanke, Vogel PRC 74, 024326 (2006) Marketin, Paar, Niksic, Vretenar PRC 79, 054323 (2009)

9/29/2021

F.S., Dvornicky, Vogel PRC 100, 014619 (2019)

Jokiniemi, Suhonen, PRC 100, 014619 (2019) (Strong quenching needed)

nucleus

⁷⁶Se

⁸²Kr

⁹⁶Mo

¹⁰⁰Ru

¹¹⁶Sn

¹²⁸Xe

¹³⁰Xe

¹³⁶Ba

30

Thank You!

WE are at the beginning of the Beyond Standard Model Road...

people often overestimate what will happen in the next two years and underestimate what will happen in ten (Bill Gates)