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Outline

Part 1

� Neutron star observations and
structure

� Overview of neutrino cooling
processes

� Composition and equation of
state of neutron star matter �
hadronic model

Part 2

� Neutrino emission processes
luminosities

� Description of pions in dense
hadronic matter

� E�ects of the medium on
neutrino emission processes

� Comparison of results for several
cooling scenarios



History

Early theoretical suggestions
� 1932 � discovery of neutron by
Chadwick

� 1931 � before neutron � anticipation of
NSs by L. Landau

� 1933 � Baade and Zwicky APS
meeting, Stanford coined the terms
supernova and neutron star

� 1939 � GR calculation of NS
hydrostatic equilibrium assuming free
degenerate neutron gas
⇒Mmax ' 0.7M�
[Oppenheimer Volko� Phys.Rev. 85 (1939)]

...in February�March 1931, in
Copenhagen, one year before the
discovery of the neutron, Landau,
Bohr and Rosenfeld discussed a not
published paper written by Landau
about a possible existence of very
dense stars, where atomic nuclei
form one giant nucleus.

[Yakovlev et al. UFN 183 (2013)]

...we advance the view that a
super-nova represents the transition
of an ordinary star into a neutron
star, consisting mainly of neutrons.

[Baade and Zwicky PNAS USA 20 (1934)]

First discovery
� 1967 � observation by chance by Jocelyn Bell
(A. Hewish's graduate student) of very stable
radio pulses with P ' 1.34 s

� First label � LGM-1
(Little Green Men)

� After more sources found � Pulsar (Pulsating
Source of Radio)

� 1974 � Nobel Prize for the discovery of pulsars
to Hewish (only)

asd



Current knowledge

Born in supernova explosions of ∼ 10− 20M�
stars

Star with the size of a city
Properties summary

� Mass M ∼ (1− 2)M�, M� ' 1.46 km
G = c = 1

� Radius R ∼ 10 km

� Compactness = 2GM/Rc2 ' 0.3

� Average density ρ̄ ∼ 1015g/cm3

Relativistic objects sustained by strong
interactions

Pulsars

Lighthouse model

asd

T. Gold Nature 218 (1968)

� Pulse period � period of NS
rotation

� All pulsars are NSs, but not NS are
seen as pulsars

� 3177 for tonight [ATNF Pulsar

Catalogue]

� ∼ 5% in binaries

Most of the NSs are seen as pulsars
Isolated cooling NS

� ∼ 40 objects with limits on the
surface temperature



NS mass measurements

asfasdf Shapiro delay
� Time delay of pulsar signal in a binary
system

� Precise NS mass measurements

Most massive NSs

� M = 2.14+0.10
−0.09M�

Cromartie et al. Nature Astronomy (2019)

� M = 2.01± 0.04M�
Antoniadis et al. Science 340 (2013)

(another method)

Much larger than canonical NS mass value
M ' 1.4M�

Challenge for the EoS studies

Radius measurements

� Typical NS: same angular size as a
proton from human length scale

� How to measure and constrain?
see talks of D. Alvarez-Castillo this
week

sorry...



Global NS structure

Static NS hydrodynamic equilibrium � Tollman-Oppenheimer-Volko� equation

Equation of state P (E) as an input

dP (r)

dr
= −

Gm(r)E(r)

r

[
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][
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= 4πr2E(r)

asd

� Various central densities ncen

↔ various masses and radii,
n0 ' 0.16 fm−3 � nuclear
saturation density
P (E)→M −R diagram

� Each EoS corresponds to a
maximum NS mass it can
support from collapse into a
black hole

� dM/dncen < 0⇒
hydrodynamically unstable



Determination of age

Spindown age
Toy model:

Pulsar rotation frequency changes with time due to
e/m emission and gravitational wave emission

Ω̇ = −
B2R6

6c3I
sin2 αΩ3 −G

32ε2

5c2
Ω5

α - angle between rotational and mag. �eld axes,

ε - eccentricity of a NS

Ω̇ = κΩn, P =
2π

Ω
⇒

(n− 1)
˙P (t)

P (t)
t = 1−

( P0

P (t)

)n−1
,
P0

P (t)
� 1

n =
Ω̈Ω

Ω̇2
� braking index measurable from observations

t =
1

n− 1

P

Ṗ

Historical SN
� Crab: 1054 AD

� Cassiopeia A: 1680 AD

� Tycho's SN: 1572 AD

Pulsar kicks

� NS distance from SN remnant

� NS velocity relative to the
remnant
⇒ estimate of the
kinematic age



NS cooling after birth

CV
∂T

∂t
= −Lγ −

∑
reaction r

∫
dV Q

(r)
v

Thermal evolution of proto-NS
� Tbirth ∼ (10− 20)MeV ∼ 102T9,
T9 = T/109K ∼ 0.1MeV

Neutrino transparency

� t >∼ 20 s: T <∼ 1MeV � NS core
transparent for neutrinos

� t ∼ 102 yr � core cooling wave reaches
the surface

� Cooling for t ∼ 102 − 105yr is governed
by neutrino emission from NS volume

Photon cooling

� Black-body radiation from the surface

LBB
γ = 4πR2σSBT

4
ext ' 7.8·1043T 4

ext,9

erg

s

asd



Problem of NS cooling

CV
∂T

∂t
= −Lγ −

∑
reaction r

∫
dV Q

(r)
v

∼ 40 cooling NSs
+ Cas A � young (1681±19 AD) X-ray
source

Tasks for cooling modeling

� Di�erent cooling rate: slow,
intermediate and fast

� The data for Tsurface(t) should be
described in a uni�ed scenario

Main di�erence in scenarios �

assumed reason for such a large discrepancy
in cooling rates

For instance � are the cooling NS masses
close to each other?



Neutrino emission in the core

Strongly degenerate matter
� T � εF,npe

� Each line on Fermi surface ↔ T

� Neutrino energy and phase space

ων × δ(ων − . . . )4πω2
νdων ∼ T

3 asdasd

One-nucleon processes
� Ordinary β-decay

�Direct URCA (DU)�

Operative only if the triangle inequality
for pF,n, pF,p, pF,e is ful�lled

pF,i = (3π2ni)
1/3 ⇒ threshold proton
density

⇒

Q
DU
ν ∼ 10

27
T

6
9 θ(n− n

DU
c,N )

erg

s · cm3

Has threshold density nDU
c,N strongly

dependent on the NS composition

Two-nucleon processes
� Nucleon bremstrahlung (NB):

n+ n→ n+ n+ ν + ν̄ + . . .

� Modi�ed URCA process (MU,
�MURCA�):

n+ n→ n+ p+ e+ ν̄ + . . .

+

Q
MU
ν ∼ T 8

Strongly depends on the nucleon interaction
GpN , GnN

Need to care about the detailed composition of the medium



NS composition

Cold NS
T ∼ 1MeV� εF,npe ∼ (60− hundreds)MeV ⇒ T → 0 for constructing the EoS

Charge neutrality
Any object bound by gravity should be electrically neutral

Local charge neutrality:∑
i

Qini = 0

Should be loosened to global charge neutrality
if the 1st order phase transition is present

as as

Symmetry energy
� Weak decays ⇒ not only neutrons

� Pauli principle + interactions:
two Fermi surfaces are better than one

� Electrons are present

Energy minimization

� Ultrarelativistic electrons ⇒ rapidly rising energy

� Upper bound for ne, np

� Neutronized matter with relatively small admixture of protons and
electrons

as as

Particle fractions nn,p,e,... are functions of the total density inside the NS



EoS vs. global NS properties

Model-independent consideration

� Parameterize all possible EoS in terms of P (n) or speed of sound c2S(n) =
dP

dE
and

impose well-established theoretical and observational constraints

� ⇒ �cloud� of possible EoS behaviors

[Annala et al. Nature Physics 16 (2020)] and refs. therein

� No information on NS composition ⇒ cannot study neutrino emission



Strong interactions

NICA White Paper Eur. Phys. J. A (2016) 52

Con�nement problem

� No description of con�nement from
QCD lagrangian

� For describing NSs we need an
EoS based on hadronic degrees of

freedom at least at low n

� Some regions of phase diagram can be
explored experimentally ⇒ veri�cation

of models

QCD phase diagram

Baryonic matter �

condensed matter with strong interactions

� Baryon number density n = (0− 10)n0,

n0 ' 0.16 fm−3

� Temperature
T = (0− 200)MeV

� Isotopic asymmetry
β = (np − nn)/n, 0 ≤ β ≤ 1.

Many phase transitions (PT)
Hadronic degrees of freedom:

� nuclear liquid-gas PT

� pairing of nucleons

� Bose-condensation of π, K, ρ �mesons

� appearance of heavier baryonic states
(hyperons, ∆-isobars)

[this talk]

Including the quark substructure:

� chiral symmetry restoration

� hadron-quark transition

� color superconductivity

� possible existence of the QCD critical
endpoint � RHIC Beam-Energy Scan,

NICA, FAIR, J-PARC



NS structure

NS matter not accessible on Earth!

Many possibilities for internal structure

asd
F. Weber J.Phys.G27 (2001)

More or less known:

� Composition of crust

� EoS up to 2n0

� EoS for n >∼ 40n0
not realized in NSs

This talk:

� Nucleonic stars

� Hyperonization

Many orders of magnitude
in:

� density: (1− 1015

g/cm3

�



Phenomenology near nuclear saturation density

Nuclear interaction Several scales
� vector mesons
mω,ρ ∼ 800MeV, r ∼ 0.2 fm

� correlated 2π exchange ∼ scalar meson
mσ ∼ 200− 600MeV r ∼ 0.3− 1 fm

� 1π exchange
mπ = 140MeV, r ∼ 1.4fm

Saturation property: volume of nuclear
droplet ∼ number of particles A

Liquid drop model

Semi-empirical Weizsaecker mass formula

EB = aV A− aSA2/3 − aC
Z(Z − 1)

A1/3
− aA

(N − Z)2

A
+ δ(N,Z)



Saturation properties

In�nite volume limit � nuclear matter

Energy per baryon
EoS up to n <∼ 2n0 parametrized in terms of experimentally available quantities

EB/A ≡ E(n) = E0 +
K

18
ε2 −

K
′

162
ε3 + · · ·+ β2Esym(n)

ε = (n− n0)/n0, β = (nn − np)/n n0 ' 0.16 fm−3

Isospin-symmetric matter (ISM) � β = 0:

Nuclear matter binding energy
Global �t of nuclear masses:
E0 = aV ' −16MeV

Nuclear incompressibility
Giant monopole resonance in nuclei

K ' (240± 20)MeV



Nuclear symmetry energy

Esym(n) = E− E(β = 0) ' β2

(
J +

L

3
ε+ . . .

)

[Tews et. al. ApJ 848 (2017)]

Experimental constraints
� Structure of nuclei

� Heavy-ion collisions of asymmetric
nuclei

� Comparison with unitary Fermi-gas �
lower bound on symmetry energy
density behavior

β�equilibrium in NS matter

� n↔ p+ e−+ν̄ � escaping

� Equilibrium: µe = µn − µp, µi =
∂E

∂ni

µe ' pFe = 4Esym(n)(1− 2
np

n
)

Crucial for determining the NS composition



Approaches to NS EoS

Microscopic
� Based on baryon-baryon potential + a
many-body method

� Sometimes controllable theoretical
uncertainties

� Robust in some density range, but
large uncertainties outside

Phenomenological
� Relatively simple models with
parameters �tted to describe the
experimental data / robust theoretical
results

� Extrapolatable and causal for all
densities - important for NSs and HICs

from A.B. Migdal �Searching for the truth� (�Ïîèñêè èñòèíû�), in Russian



Contradicting constraints

Maximum NS mass constraint
Any EoS corresponds to some Mmax

Mmax > 2.01± 0.04M�

Mmax > 2.14+0.10
−0.09M�
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Mmax
>∼ 2M� � requires a sti� EoS

Must be reconciled within a
single approach

Sti� EoS ⇒ large NS radii

Possible contradiction with GW
observations

[talk of D. Alvarez-Castillo]

Particles �ows in ion collisions
Comressed ISM (N = Z) � can be extracted from

heavy-ion experiments

Constraint for the pressure P (n) at 2n0
<∼ n <∼ 4.5n0
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Danielewicz et al. Science 298 (2002)

Requires a soft EoS in ISM

Apparent con�ict with large Mmax



Hyperon puzzle I

Hyperon in β-equilibrium matter
� Lightest strange baryons: Λ0(1116),Σ±,0(1193),Ξ−,0(1318)

� Can appear by weak processes at T = 0 in long-living NS
matter (not in dense ISM)

� Do not appear without taking their interaction with the
medium into account
Ambartsumyan Saakyan Soviet Astronomy 4 (1960) asad

� Data on hypernuclei:
attractive hyperon interactions with the

medium

� ⇒ at n >∼ (2− 3)n0 � nucleons partly
converted to Λ,Σ,Ξ

Glendenning ApJ (1985) �Neutron stars are

giant hypernuclei?�

� Strong softening of the EoS
Not a problem before 2M� NSs, but...

� For standard EoSs leads to Mmax

decreasing below observable limits asd
[Bombaci JPS Conf.Proc.17 (2017)]



Possible solutions

� Very sti� EoS without hyperons � contradicts the �ow constraint

� Decon�nement phase transition before the hyperon appearance
Needs very sti� EoS of quark matter ⇒ recon�nement problem

for purely thermodynamic description

� Microscopic approaches � N-hyperon and hyperon-hyperon three-body forces

� Withing phenomenological models � e.g. accounting for in-medium modi�cation of
hadron properties



Hyperon puzzle II

Hyperons can a�ect NS cooling

Direct URCA-type reactions with
hyperons
Weak reactions with strangeness change

Some of them do not include neutron, e.g.

� Λ � p+ e+ ν̄

� Ξ0 � p+ e+ ν̄

⇒ (almost) no �triangle inequality�
threshold density

E�cient reactions become operative
but less than DU by factor ∼ 0.01

Typical situation with an e�cient
reaction
Cooling curves are:

� Almost insensitive to NS mass before

ncen > nDUcrit ↔MDU
crit

in some approaches � see part II

� M >∼ MDU
crit � superfast cooling

� Seemingly all observed cooling NS have
almost the same masses...

� But they are di�erent; is this
inevitable?

asd



Phenomenological example: Relativistic mean-�eld (RMF) models

Degrees of freedom
�Quantum� �eld theory-based phenomenology of hadronic degrees of freedom

Minimum Yukawa coupling of mesons to baryons Lint = gσΨ̄Ψ + . . .

Scalar meson σ ↔ attraction, vector mesons ω, ρ, φ↔ repulsion
Mean-�eld approximation

Mesons
� Baryon sources ⇒ non-zero
mean-�eld solutions for the �elds

σ, ω, ρ0, φ

� E�ect of quantum �uctuations and
medium � in-medium parameters of
the interactions

� Analogous to order parameters in
Ginzburg-Landau theory

Pseudoscalar pion mean-�eld π = 0

if no charged pion condensation

Baryons

nucleons

σ,ω,ρ ≈ σ,ω,ρ

g*

g*

m* m*
 �
Σ

g*

Quasiparticle approximation � baryons
in a self-consistent mean �eld

� Coupling constants g∗ � from
nuclear phenomenology around
n ' n0 ↔ Landau Fermi-liquid
theory

Succesful applications
Even the simplest non-linear Walecka model

[Boguta Bodmer NPA 292 (1977)] (see also talk of R.N. del Alamo 1st week)

� acceptable description of nuclear matter and �nite nuclei

Hyperonization in simplest models → Mmax < observable limits



Hadron masses and couplings in medium

Chiral symmetry
Spontaneous chiral symmetry breaking:

constituent quark masses and hadron masses ∼ 〈q̄q〉 �
chiral condensate as an order parameter for the chiral phase transition

Hadron mass change in the medium � partial chiral symmetry restoration.
Theoretical hints

� QCD sum rules: for all hadrons m∗(n)/m ' 1− 0.18 (n/n0)
Hatsuda, Lee Phys. Rev. C 46 (1992)

� Brown-Rho scaling conjecture:

m∗N/mN ' m
∗
ω/mω ' m∗ρ/mρ ' . . .

Brown, Rho Phys.Rev.Lett 66 (1991)

Lots of controversy, but allows to constrain phenomenological models
Modi�cation of coupling constants

Nucleon interactions in the medium � resummation of ladder diagrams

Can be expressed in RMF language as e�ective couplings g∗ in the medium



Generalized RMF models

E. E. Kolomeitsev and D. N. Voskresensky NPA 759 (2005) 373

Hadron mass change in the medium
Scalar �eld σ � analogous to the chiral

condensate 〈q̄q〉
⇒ all hadron masses depend on σ

mN → m∗N (σ) ≡ mNΦN (σ)

mω → m∗ω(σ) ≡ mωΦω(σ)

. . .

E�ectively takes into account partial chiral
symmetry restoration

In-medium coupling constants
Scalar �eld dependence can be introduced

into the Lagrangian directly

Minimization of energy → σ = σ(n)

gσN → g∗σN (σ) ≡ gσNχσ(σ),

gωN → g∗ωN (σ) ≡ gωNχω(σ),

. . .

Explicit thermodynamic consistency

KVOR model (Kolomeitsev Voskresensky ω − ρ)

� Nice model passing many constraints from nuclear physics and NS observations

� ......without hyperons

� With hyperons � Mmax violated



Generalized RMF models with σ�dependence

E. E. Kolomeitsev, D.N. Voskresensky, Nucl.Phys. A 759 (2005)

K. A. M, Kolometsev, Voskesensky, Phys. Lett. B 748 (2015), Nucl.Phys. A961 (2017)

L = Lbar + Lmes + Ll

Áàðèîíû {b} = (N,Λ,Σ±,0,Ξ−,0)

Lbar =
∑
i=b∪r

(Ψ̄i

(
iD

(i)
µ γµ −miΦi(σ)

)
Ψi,

D
(i)
µ = ∂µ + igωiχωi(σ)ωµ + igρiχρi(σ)~t~ρµ + igφiχφi(σ)φµ,

Coupling to ~ρµ determines the symmetry energy
Ìåçîíû {m} = (σ, ω, ρ, φ)

Lmes =
∂µσ∂µσ

2
−
m2
σΦ2

σ(σ)σ2

2
− U(σ) +

m2
ωΦ2

ω(σ)ωµωµ

2
−
ωµνωµν

4
+
m2
ρΦ2

ρ(σ)~ρµ~ρµ

2
−

−
ρµνρµν

4
+
m2
φΦ2

φ(σ)φµφµ

2
−
φµνφµν

4
, U(σ) = bσ3/3 + cσ4/4

ωµν = ∂νωµ − ∂µων , ~ρµν = ∂ν~ρµ − ∂µ~ρν , φµν = ∂νφµ − ∂µφν

Vector meson φ with hidden strangeness (s̄s): additional repulsion between hyperons
leptons {l} = (e, µ)← in the beta-equilibrium model

Ll =
∑
l ψ̄l(i∂µγ

µ −ml)ψl.



Equation of state

Energy density at T = 0

E =
m4
Nf

2

2C2
σ

ησ(f) + U(f) +
C2
ω

2m2
Nηω(f)

(∑
b

xωbnb

)2
+

C2
ρ

2m2
Nηρ(f)

(∑
b

xρbt3bnb

)2
+

+
C2
ω

2m2
Nηφ(f)

m2
ω

m2
φ

(∑
H

xφHnH
)2

+
∑
b

pF,b∫
0

p2 dp

π2

√
p2 +m2

bΦ
2
b(f) + El,

El =
∑
l=e,µ

pF,l∫
0

p2dp

π2

√
p2 +m2

l , Ci =
giNmN

mi
, i = σ, ω, ρ, f =

gσNχσN (σ)

mN
σ

Equilibrium conditions
∂E

∂f
= 0︸ ︷︷ ︸

scalar �eld
e.o.m

,
∑
i=b∪l

Qini = 0

︸ ︷︷ ︸
electroneutrality

, µb = µn −Qbµe︸ ︷︷ ︸
β�equilibrium

Meson-baryon couplings
xmb = gmb/gmN :

� Symmetries of quark models of hadrons

� Hyeron potentials in nuclei

Meson masses and couplings
Enter only in combinations Ci and

ηm(f) =
Φ2
m(f)

χ2
m(f)

In in�nite matter g∗mb and m
∗
m can't be

determined independently

Ci � from saturation properties
von Neuman elephant?

E. Fermi: �...my friend Johnny
von Neumann used to say, with four
parameters I can �t an elephant, and
with �ve I can make him wiggle his
trunk.� [F. Dyson Nature (2004)]

Many constraints in a continuous interval, some contradicting � need of this much �exibility



The elephant...

asdasd � ...describes a lot of constraints...

� even including more possible PTs (∆-resonances,
ρ− condensation)
[K.A.M, Kolometsev, Voskesensky, Nucl.Phys.A(2016, 2017, 2018)]



Resulting NS properties

[K.A.M., E.E. Kolomeitsev, D.N.

Voskresensky, Physics Letters B 748

(2015)]

Results
Hyperons are there at n >∼ (2− 3)n0

� MKVOR*H∆φ:
Mmax = 2.22M� with hyperons

� Flow constraint satis�ed

� + many other constraints
[K.A.M., E.E. Kolomeitsev, D.N.Voskresensky

Nucl.Phys.A 950 (2015)]

No NS-mass hyperon puzzle in this kind of models



End of part 1

Summary
� Neutron stars are natural laboratories
for studying matter under extreme
conditions

� NS surface temperature evolution is
governed by neutrino emission from the
whole volume

� Neutrino luminosity depends on the
composition of the strongly interacting
dense NS core

� New constraints ⇒ better models of
strong interactions inside NS core
Possible phase transitions:

� new puzzles for EoS studies

� new channels of neutrino emission

Part 2

Contribution to the NS cooling rates � hyperon puzzle II?


