Neutron stars: Part 1 Introduction to NS structure

Konstantin Maslov

Bogoliubov Laboratory for Theoretical physics Joint Institute for Nuclear Research, Dubna

Collaboration: D.N.Voskresensky (BLTP JINR, NRNU MEPHI) E.E. Kolomeitsev (Matej Bel University, BLTP JINR) D. Blaschke (University of Wroclaw, BLTP JINR, NRNU MEPHI) A. Ayriyan, H. Grigorian (LIT JINR)

> EuCAPT Astroneutrino Theory Workshop 2021 20.09.2021 - 01.10.2021

Part 1

- Neutron star observations and structure
- Overview of neutrino cooling processes
- Composition and equation of state of neutron star matter – hadronic model

Part 2

- Neutrino emission processes luminosities
- Description of pions in dense hadronic matter
- Effects of the medium on neutrino emission processes
- Comparison of results for several cooling scenarios

History

Early theoretical suggestions

- 1932 discovery of neutron by Chadwick
- 1931 before neutron anticipation of NSs by L. Landau
- 1933 Baade and Zwicky APS meeting, Stanford coined the terms supernova and neutron star
- 1939 GR calculation of NS hydrostatic equilibrium assuming free degenerate neutron gas
 ⇒ M_{max} ≃ 0.7 M_☉ [Oppenheimer Volkoff Phys.Rev. 85 (1939)]

First discovery

- 1967 observation by chance by Jocelyn Bell (A. Hewish's graduate student) of very stable radio pulses with $P\simeq 1.34\,\mathrm{s}$
- First label LGM-1 (Little Green Men)
 - After more sources found Pulsar (Pulsating Source of Radio)
- 1974 Nobel Prize for the discovery of pulsars to Hewish (only)

...in February—March 1931, in Copenhagen, one year before the discovery of the neutron, Landau, Bohr and Rosenfeld discussed a not published paper written by Landau about a possible existence of very dense stars, where atomic nuclei form one giant nucleus.

[Yakovlev et al. UFN 183 (2013)] we advance the view that a

...we advance the view that a super-nova represents the transition of an ordinary star into a neutron star, consisting mainly of neutrons.

[Baade and Zwicky PNAS USA 20 (1934)]

Current knowledge

Born in supernova explosions of $\sim 10-20\,M_\odot$ stars

Star with the size of a city Properties summary

- Mass $M \sim (1-2) M_{\odot}, M_{\odot} \simeq 1.46 \text{ km}$ G = c = 1
- Radius $R \sim 10 \,\mathrm{km}$
- Compactness = $2GM/Rc^2 \simeq 0.3$
- Average density $\bar{\rho} \sim 10^{15} {\rm g/cm^3}$ Relativistic objects sustained by strong interactions

Pulsars Lighthouse model

- T. Gold Nature 218 (1968)
 - Pulse period period of NS rotation
 - All pulsars are NSs, but not NS are seen as pulsars
 - 3177 for tonight [ATNF Pulsar Catalogue]
 - $\sim 5\%$ in binaries

Most of the NSs are seen as pulsars Isolated cooling \mathbf{NS}

• ~ 40 objects with limits on the surface temperature

NS mass measurements

Shapiro delay

- Time delay of pulsar signal in a binary system
- Precise NS mass measurements

Most massive NSs

- $M = 2.14^{+0.10}_{-0.09} M_{\odot}$ Cromartie et al. Nature Astronomy (2019)
- $M = 2.01 \pm 0.04 M_{\odot}$ Antoniadis et al. Science 340 (2013) (another method)

Much larger than canonical NS mass value $M\simeq 1.4\,M_\odot$ Challenge for the EoS studies

Radius measurements

- Typical NS: same angular size as a proton from human length scale
- How to measure and constrain? see talks of D. Alvarez-Castillo this week

Static NS hydrodynamic equilibrium – Tollman-Oppenheimer-Volkoff equation Equation of state P(E) as an input

$$\frac{dP(r)}{dr} = -\frac{Gm(r)E(r)}{r} \left[1 + \frac{P(r)}{E(r)}\right] \left[1 + \frac{4\pi r^3 P(r)}{m(r)}\right] \left[1 - 2\frac{Gm(r)}{r}\right]^{-1},$$
$$\frac{dm(r)}{dr} = 4\pi r^2 E(r)$$

- Various central densities n_{cen} ↔ various masses and radii, n₀ ≃ 0.16 fm⁻³ - nuclear saturation density P(E) → M - R diagram
- Each EoS corresponds to a maximum NS mass it can support from collapse into a black hole
- $dM/dn_{cen} < 0 \Rightarrow$ hydrodynamically unstable

Spindown age

Toy model:

Pulsar rotation frequency changes with time due to ${\rm e}/{\rm m}$ emission and gravitational wave emission

$$\dot{\Omega} = -\frac{B^2 R^6}{6c^3 I} \sin^2 \alpha \Omega^3 - G \frac{32 \varepsilon^2}{5c^2} \Omega^5$$

 α - angle between rotational and mag. field axes, ε - eccentricity of a NS

$$\dot{\Omega} = \kappa \Omega^n, \quad P = \frac{2\pi}{\Omega} \Rightarrow$$
 $(n-1)\frac{\dot{P(t)}}{P(t)}t = 1 - \left(\frac{P_0}{P(t)}\right)^{n-1}, \frac{P_0}{P(t)} \ll 1$

 $n=\frac{\ddot{\Omega}\Omega}{\dot{\Omega}^2}$ – braking index measurable from observations

$$t = \frac{1}{n-1} \frac{P}{\dot{P}}$$

Historical SN

- Crab: 1054 AD
- Cassiopeia A: 1680 AD
- Tycho's SN: 1572 AD

Pulsar kicks

- $\bullet~{\rm NS}$ distance from SN remnant
- NS velocity relative to the remnant
 ⇒ estimate of the

kinematic age

NS cooling after birth

$$C_V \frac{\partial T}{\partial t} = -L_\gamma - \sum_{\text{reaction } r} \int dV Q_v^{(r)}$$

Thermal evolution of proto-NS

• $T_{\text{birth}} \sim (10 - 20) \text{ MeV} \sim 10^2 T_9,$ $T_9 = T/10^9 K \sim 0.1 \text{ MeV}$

Neutrino transparency

- $t \gtrsim 20 \text{ s: } T \lesssim 1 \text{ MeV} \text{NS}$ core transparent for neutrinos
- $t \sim 10^2 \,\mathrm{yr}$ core cooling wave reaches the surface
- Cooling for $t \sim 10^2 10^5$ yr is governed by neutrino emission from NS volume

Photon cooling

• Black-body radiation from the surface

$$L_{\gamma}^{\rm BB} = 4\pi R^2 \sigma_{SB} T_{\rm ext}^4 \simeq 7.8 \cdot 10^{43} T_{\rm ext,9}^4 \frac{\rm erg}{\rm s}$$

Problem of NS cooling

 $\sim 40~{\rm cooling~NSs}$ + Cas A - young (1681±19 AD) X-ray source

Tasks for cooling modeling

- Different cooling rate: slow, intermediate and fast
- The data for $T_{\text{surface}}(t)$ should be described in a unified scenario

Main difference in scenarios -

assumed reason for such a large discrepancy in cooling rates

For instance – are the cooling NS masses close to each other?

Neutrino emission in the core

Strongly degenerate matter

- $T \ll \varepsilon_{F,npe}$
- Each line on Fermi surface $\leftrightarrow T$
- Neutrino energy and phase space

$$\omega_{\nu} \times \delta(\omega_{\nu} - \dots) 4\pi \omega_{\nu}^2 d\omega_{\nu} \sim T^3$$

One-nucleon processes

$$Q_{\nu}^{\mathrm{DU}} \sim 10^{27} T_9^6 \theta(n - n_{c,N}^{\mathrm{DU}}) \frac{\mathrm{erg}}{\mathrm{s} \cdot \mathrm{cm}^3}$$

Has threshold density $n_{c,N}^{DU}$ strongly dependent on the NS composition

Two-nucleon processes

• Nucleon bremstrahlung (NB):

 $n+n
ightarrow n+n+
u+ar{
u}+\ldots$

• Modified URCA process (MU, "MURCA"):

 $n+n \rightarrow n+p+e+\bar{\nu}+\ldots$

$$Q_{\nu}^{MU} \sim T^8$$

Strongly depends on the nucleon interaction $G_{pN}, G_{nN} \label{eq:gradient}$

Need to care about the detailed composition of the medium

Cold NS

 $T \sim 1 \,\text{MeV} \ll \varepsilon_{\text{F},npe} \sim (60 - \text{hundreds}) \,\text{MeV} \Rightarrow T \rightarrow 0$ for constructing the EoS Charge neutrality

Any object bound by gravity should be electrically neutral

Local charge neutrality:

 $\sum_{i} Q_i n_i = 0$

Should be loosened to global charge neutrality

if the 1^{st} order phase transition is present

Symmetry energy

- Weak decays \Rightarrow not only neutrons
- Pauli principle + interactions: two Fermi surfaces are better than one
- Electrons are present

Energy minimization

- Ultrarelativistic electrons \Rightarrow rapidly rising energy
- Upper bound for n_e, n_p
- Neutronized matter with relatively small admixture of protons and electrons

Particle fractions $n_{n,p,e,...}$ are functions of the total density inside the NS

${\it Model-independent\ consideration}$

- Parameterize all possible EoS in terms of P(n) or speed of sound $c_S^2(n) = \frac{dP}{dE}$ and impose well-established theoretical and observational constraints
- \Rightarrow "cloud" of possible EoS behaviors

- [Annala et al. Nature Physics 16 (2020)] and refs. therein
- No information on NS composition \Rightarrow cannot study neutrino emission

Strong interactions

NICA White Paper Eur. Phys. J. A (2016) 52 Confinement problem

- No description of confinement from QCD lagrangian
 - For describing NSs we need an EoS based on hadronic degrees of freedom at least at low n
- Some regions of phase diagram can be explored experimentally ⇒ verification of models

QCD phase diagram

Baryonic matter -

condensed matter with strong interactions

• Baryon number density $n = (0 - 10) n_0$, $n_0 \simeq 0.16 \text{ fm}^{-3}$ • Temperature T = (0 - 200) MeV• Isotopic asymmetry $\beta = (n_p - n_n)/n, 0 \le \beta \le 1.$

Many phase transitions (PT) Hadronic degrees of freedom:

- nuclear liquid-gas PT
- pairing of nucleons
- Bose-condensation of π , K, ρ -mesons
- appearance of heavier baryonic states (hyperons, Δ-isobars)
 [this talk]

Including the quark substructure:

- chiral symmetry restoration
- hadron-quark transition
- color superconductivity
- possible existence of the QCD critical endpoint - RHIC Beam-Energy Scan, NICA, FAIR, J-PARC

NS matter not accessible on Earth! Many possibilities for internal structure

More or less known:

- Composition of crust
- EoS up to $2n_0$
- EoS for $n \gtrsim 40 n_0$ not realized in NSs

This talk:

- Nucleonic stars
- Hyperonization

Many orders of magnitude in:

• density: $(1 - 10^{15})$ g/cm³

.

F. Weber J.Phys.G27 (2001)

Nuclear interaction

Liquid drop model

Several scales

- vector mesons $m_{\omega,\rho} \sim 800 \text{ MeV}, \ r \sim 0.2 \text{ fm}$
- correlated 2π exchange ~ scalar meson $m_{\sigma} \sim 200 - 600 \text{ MeV} r \sim 0.3 - 1 \text{ fm}$
- 1π exchange $m_{\pi} = 140 \text{ MeV}, r \sim 1.4 \text{fm}$

 $\begin{array}{l} \mbox{Saturation property: volume of nuclear} \\ \mbox{droplet} \sim \mbox{number of particles } A \end{array}$

Semi-empirical Weizsaecker mass formula

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \delta(N,Z)$$

Saturation properties

Infinite volume limit - nuclear matter

Energy per baryon

EoS up to $n \lesssim 2 n_0$ parametrized in terms of experimentally available quantities

$$E_B/A \equiv \mathcal{E}(n) = \mathcal{E}_0 + \frac{K}{18}\epsilon^2 - \frac{K'}{162}\epsilon^3 + \dots + \beta^2 \mathcal{E}_{sym}(n)$$

$$\epsilon = (n - n_0)/n_0, \quad \beta = (n_n - n_p)/n \quad n_0 \simeq 0.16 \,\text{fm}^{-3}$$

Isospin-symmetric matter (ISM) – $\beta = 0$:

Nuclear matter binding energy Global fit of nuclear masses: $\mathcal{E}_0 = a_V \simeq -16 \text{ MeV}$

Nuclear incompressibility

Giant monopole resonance in nuclei

 $K \simeq (240 \pm 20) \,\mathrm{MeV}$

Nuclear symmetry energy

$$\mathcal{E}_{\text{sym}}(n) = \mathcal{E} - \mathcal{E}(\beta = 0) \simeq \beta^2 \left(J + \frac{L}{3} \epsilon + \dots \right)$$

Experimental constraints • Structure of nuclei

- Heavy-ion collisions of asymmetric nuclei
- Comparison with unitary Fermi-gas lower bound on symmetry energy density behavior

β -equilibrium in NS matter

•
$$n \leftrightarrow p + e^- + \bar{\nu}$$
 – escaping

• Equilibrium: $\mu_e = \mu_n - \mu_p, \ \mu_i =$ ∂n_i

$$\mu_e \simeq p_{\mathrm{F}e} = 4\mathcal{E}_{\mathrm{sym}}(n)(1-2\frac{n_p}{n})$$

Crucial for determining the NS composition

Approaches to NS EoS

Microscopic

- Based on baryon-baryon potential + a many-body method
- Sometimes controllable theoretical uncertainties
- Robust in some density range, but large uncertainties outside

Phenomenological

- Relatively simple models with parameters fitted to describe the experimental data / robust theoretical results
- Extrapolatable and causal for all densities important for NSs and HICs

from A.B. Migdal "Searching for the truth" ("Поиски истины"), in Russian

Contradicting constraints

Maximum NS mass constraint Any EoS corresponds to some M_{max}

 $M_{\rm max} > 2.01 \pm 0.04 \, M_{\odot}$

 $M_{\rm max} > 2.14^{+0.10}_{-0.09} \, M_{\odot}$

 $M_{
m max} \gtrsim 2 \, M_{\odot}$ – requires a stiff EoS

Must be reconciled within a single approach

Stiff EoS \Rightarrow large NS radii

Possible contradiction with GW observations

[talk of D. Alvarez-Castillo]

Constraint for the pressure P(n) at $2n_0 \lesssim n \lesssim 4.5 n_0$

Danielewicz et al. Science 298 (2002)

Requires a soft EoS in ISM

Apparent conflict with large M_{\max}

Hyperon in β -equilibrium matter

- Lightest strange baryons: $\Lambda^{0}(1116), \Sigma^{\pm,0}(1193), \Xi^{-,0}(1318)$
- Can appear by weak processes at T = 0 in long-living NS matter (not in dense ISM)
- Do not appear without taking their interaction with the medium into account Ambartsumyan Saakyan Soviet Astronomy 4 (1960)
- Data on hypernuclei: attractive hyperon interactions with the medium
 - \Rightarrow at $n \gtrsim (2-3) n_0$ nucleons partly converted to Λ, Σ, Ξ Glendenning ApJ (1985) "Neutron stars are giant hypernuclei?"
 - Strong softening of the EoS Not a problem before $2 M_{\odot}$ NSs, but...
 - For standard EoSs leads to $M_{\rm max}$ decreasing below observable limits

2.5

[Bombaci JPS Conf.Proc.17 (2017)]

- Very stiff EoS without hyperons contradicts the flow constraint
- Deconfinement phase transition before the hyperon appearance Needs very stiff EoS of quark matter ⇒ reconfinement problem for purely thermodynamic description
- $\bullet\,$ Microscopic approaches N-hyperon and hyperon-hyperon three-body forces
- Withing phenomenological models e.g. accounting for in-medium modification of hadron properties

Hyperon puzzle II

Hyperons can affect NS cooling Direct URCA-type reactions with hyperons

Weak reactions with strangeness change

Some of them do not include neutron, e.g.

•
$$\Lambda \rightleftharpoons p + e + \bar{\nu}$$

• $\Xi^0 \rightleftharpoons p + e + \bar{\nu}$

 $\Rightarrow (almost) no "triangle inequality"$ threshold densityEfficient reactions become operative $but less than DU by factor <math>\sim 0.01$

Typical situation with an efficient reaction

Cooling curves are:

• Almost insensitive to NS mass before

$$n_{\rm cen} > n_{\rm crit}^{DU} \leftrightarrow M_{\rm crit}^{\rm DU}$$

in some approaches - see part II

- $M \gtrsim M_{\rm crit}^{\rm DU}$ superfast cooling
- Seemingly all observed cooling NS have almost the same masses...
- But they are different; is this inevitable?

Degrees of freedom

"Quantum" field theory-based phenomenology of hadronic degrees of freedom

Minimum Yukawa coupling of mesons to baryons $\mathcal{L}_{int} = g\sigma \bar{\Psi} \Psi + \dots$

 $\label{eq:scalar} \begin{array}{l} \text{Scalar meson } \sigma \leftrightarrow \text{attraction}, \, \text{vector mesons } \omega, \rho, \phi \leftrightarrow \text{repulsion} \\ \textbf{Mean-field approximation} \end{array}$

Mesons

- Baryon sources \Rightarrow non-zero mean-field solutions for the fields $\sigma, \omega, \rho^0, \phi$
- Effect of quantum fluctuations and medium in-medium parameters of the interactions
- Analogous to order parameters in Ginzburg-Landau theory

Pseudoscalar pion mean-field $\pi = 0$

if no charged pion condensation

Succesful applications

Even the simplest non-linear Walecka model

[Boguta Bodmer NPA 292 (1977)] (see also talk of R.N. del Alamo 1st week)

- acceptable description of nuclear matter and finite nuclei

Hyperonization in simplest models $\rightarrow M_{\text{max}} < \text{observable limits}$

Baryons

Quasiparticle approximation – baryons in a self-consistent mean field

• Coupling constants g^* - from nuclear phenomenology around $n \simeq n_0 \leftrightarrow$ Landau Fermi-liquid theory

Hadron masses and couplings in medium

Chiral symmetry

Spontaneous chiral symmetry breaking:

constituent quark masses and hadron masses $\sim \langle \bar{q}q \rangle$ – chiral condensate as an order parameter for the chiral phase transition

Hadron mass change in the medium \rightleftarrows partial chiral symmetry restoration. Theoretical hints

• QCD sum rules: for all hadrons $m^*(n)/m \simeq 1 - 0.18 (n/n_0)$ Hatsuda, Lee Phys. Rev. C 46 (1992)

• Brown-Rho scaling conjecture:

$$m_N^*/m_N \simeq m_\omega^*/m_\omega \simeq m_\rho^*/m_\rho \simeq \dots$$

Brown, Rho Phys.Rev.Lett 66 (1991)

Lots of controversy, but allows to constrain phenomenological models Modification of coupling constants

Nucleon interactions in the medium - resummation of ladder diagrams

$$\overset{a}{\underset{c}{\longrightarrow}} \overset{G}{\underset{d}{\longrightarrow}} \overset{b}{\underset{c}{\longrightarrow}} = \overset{a}{\underset{c}{\longrightarrow}} \overset{V}{\underset{d}{\longrightarrow}} \overset{b}{\underset{d}{\longrightarrow}} \overset{a}{\underset{c}{\longrightarrow}} \overset{--}{\underset{d}{\longrightarrow}} \overset{b}{\underset{d}{\longrightarrow}} \overset{a}{\underset{d}{\longrightarrow}} \overset{a}{\underset{d}{\longrightarrow}} \overset{--}{\underset{d}{\longrightarrow}} \overset{b}{\underset{d}{\longrightarrow}} \overset{a}{\underset{d}{\longrightarrow}} \overset{--}{\underset{d}{\longrightarrow}} \overset{b}{\underset{d}{\longrightarrow}} \overset{a}{\underset{d}{\longrightarrow}} \overset{--}{\underset{d}{\longrightarrow}} \overset{b}{\underset{d}{\longrightarrow}} \overset{a}{\underset{d}{\longrightarrow}} \overset{a}{\underset{d}{\overset{a}{\underset}} \overset{a}{\underset{d}{\overset}} \overset{a}{\underset{d}{}} \overset{a}{\underset{$$

Can be expressed in RMF language as effective couplings g^* in the medium

E. E. Kolomeitsev and D. N. Voskresensky NPA 759 (2005) 373

Hadron mass change in the medium

Scalar field σ – analogous to the chiral condensate $\langle \bar{q}q \rangle$

 \Rightarrow all hadron masses depend on σ

$$m_N \to m_N^*(\sigma) \equiv m_N \Phi_N(\sigma)$$

 $m_\omega \to m_\omega^*(\sigma) \equiv m_\omega \Phi_\omega(\sigma)$

In-medium coupling constants

Scalar field dependence can be introduced into the Lagrangian directly

Minimization of energy $\rightarrow \sigma = \sigma(\mathbf{n})$

$$g_{\sigma N} \to g_{\sigma N}^*(\sigma) \equiv g_{\sigma N} \chi_{\sigma}(\sigma), g_{\omega N} \to g_{\omega N}^*(\sigma) \equiv g_{\omega N} \chi_{\omega}(\sigma),$$

Effectively takes into account partial chiral symmetry restoration

Explicit thermodynamic consistency

KVOR model (Kolomeitsev Voskresensky $\omega - \rho$)

- Nice model passing many constraints from nuclear physics and NS observations
 -without hyperons
 - With hyperons $M_{\rm max}$ violated

E. E. Kolomeitsev, D.N. Voskresensky, Nucl. Phys. A 759 (2005)

K. A. M, Kolometsev, Voskesensky, Phys. Lett. B 748 (2015), Nucl. Phys. A961 (2017)

$$\mathcal{L} = \mathcal{L}_{\mathrm{bar}} + \mathcal{L}_{\mathrm{mes}} + \mathcal{L}_l$$
арионы $\{b\} = (N, \Lambda, \Sigma^{\pm, 0}, \Xi^{-, 0})$

Б

$$\mathcal{L}_{\text{bar}} = \sum_{i=b\cup r} \left(\bar{\Psi}_i \left(i D_{\mu}^{(i)} \gamma^{\mu} - m_i \Phi_i(\sigma) \right) \Psi_i, \right. \\ \left. D_{\mu}^{(i)} = \partial_{\mu} + i g_{\omega i} \chi_{\omega i}(\sigma) \omega_{\mu} + i g_{\rho i} \chi_{\rho i}(\sigma) \vec{t} \vec{\rho}_{\mu} + i g_{\phi i} \chi_{\phi i}(\sigma) \phi_{\mu}, \right.$$

Coupling to $\vec{\rho}_{\mu}$ determines the symmetry energy Meзoны $\{m\}=(\sigma,\omega,\rho,\phi)$

$$\mathcal{L}_{\rm mes} = \frac{\partial_{\mu}\sigma\partial^{\mu}\sigma}{2} - \frac{m_{\sigma}^{2}\Phi_{\sigma}^{2}(\sigma)\sigma^{2}}{2} - U(\sigma) + \frac{m_{\omega}^{2}\Phi_{\omega}^{2}(\sigma)\omega_{\mu}\omega^{\mu}}{2} - \frac{\omega_{\mu\nu}\omega^{\mu\nu}}{4} + \frac{m_{\rho}^{2}\Phi_{\rho}^{2}(\sigma)\vec{\rho}_{\mu}\vec{\rho}^{\mu}}{2} - \frac{\rho_{\mu\nu}\phi^{\mu\nu}}{4}, \quad U(\sigma) = b\sigma^{3}/3 + c\sigma^{4}/4$$
$$\omega_{\mu\nu} = \partial_{\nu}\omega_{\mu} - \partial_{\mu}\omega_{\nu}, \quad \vec{\rho}_{\mu\nu} = \partial_{\nu}\vec{\rho}_{\mu} - \partial_{\mu}\vec{\rho}_{\nu}, \quad \phi_{\mu\nu} = \partial_{\nu}\phi_{\mu} - \partial_{\mu}\phi_{\nu}$$

Vector meson ϕ with hidden strangeness ($\bar{s}s$): additional repulsion between hyperons leptons $\{l\} = (e, \mu) \leftarrow$ in the beta-equilibrium model $\mathcal{L}_l = \sum_l \bar{\psi}_l (i\partial_\mu \gamma^\mu - m_l) \psi_l.$

Equation of state

Energy density at T = 0

$$E = \frac{m_N^4 f^2}{2C_{\sigma}^2} \eta_{\sigma}(f) + U(f) + \frac{C_{\omega}^2}{2m_N^2 \eta_{\omega}(f)} \left(\sum_b x_{\omega b} n_b\right)^2 + \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \left(\sum_b x_{\rho b} t_{3b} n_b\right)^2 + \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \left(\sum_b x_{\rho b} t_{3b} n_b\right)^2 + \frac{C_{\omega}^2}{2m_N^2 \eta_{\rho}(f)} \left(\sum_b x_{\rho b} t_{3b} n_b\right)^2 + \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \left(\sum_b x_{\rho} t_{3b} n_b\right)^2 + \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \left(\sum_b x_$$

$$+\frac{C_{\omega}^{2}}{2m_{N}^{2}\eta_{\phi}(f)}\frac{m_{\omega}^{2}}{m_{\phi}^{2}}\Big(\sum_{H}x_{\phi H}n_{H}\Big)^{2}+\sum_{b}\int_{0}^{p_{\mathrm{F},b}}\frac{p^{2}\,dp}{\pi^{2}}\sqrt{p^{2}+m_{b}^{2}\Phi_{b}^{2}(f)}+E_{l},$$

$$\mathcal{E}_l = \sum_{l=e,\mu} \int\limits_0^{p_{\mathrm{F},l}} \frac{p^2 dp}{\pi^2} \sqrt{p^2 + m_l^2}, \quad C_i = \frac{g_{iN}m_N}{m_i}, \quad i = \sigma, \omega, \rho, \quad f = \frac{g_{\sigma N}\chi_{\sigma N}(\sigma)}{m_N}\sigma$$

Meson masses and couplings Enter only in combinations C_i and

 $\eta_m(f) = \frac{\Phi_m^2(f)}{\chi_m^2(f)}$

In infinite matter g_{mb}^* and m_m^* can't be determined independently

C_i – from saturation properties von Neuman elephant?

E. Fermi: "...my friend Johnny von Neumann used to say, with four parameters I can fit an elephant, and with five I can make him wiggle his trunk." [F. Dyson Nature (2004)]

Many constraints in a continuous interval, some contradicting – need of this much flexibility

Equilibrium conditions

$$\frac{\partial E}{\partial f} = 0, \underbrace{\sum_{i=b\cup l} Q_i n_i = 0}_{\text{celar field}}, \underbrace{\mu_b = \mu_n - Q_b \mu_e}_{\beta - \text{equilibrium}}$$

e.o.m electroneutrality

Meson-baryon couplings

 $x_{mb} = g_{mb}/g_{mN} :$

- Symmetries of quark models of hadrons
- Hyeron potentials in nuclei

The elephant...

- ...describes a lot of constraints...
- even including more possible PTs (Δ -resonances, ρ^- condensation)

[K.A.M, Kolometsev, Voskesensky, Nucl. Phys. A(2016, 2017, 2018)]

Resulting NS properties

Results

Hyperons are there at $n \gtrsim (2-3) n_0$

- MKVOR* $H\Delta\phi$: $M_{\text{max}} = 2.22 M_{\odot}$ with hyperons
- Flow constraint satisfied
- + many other constraints [K.A.M., E.E. Kolomeitsev, D.N.Voskresensky Nucl.Phys.A 950 (2015)]

No NS-mass hyperon puzzle in this kind of models

[K.A.M., E.E. Kolomeitsev, D.N. Voskresensky, Physics Letters B 748 (2015)]

Summary

- Neutron stars are natural laboratories for studying matter under extreme conditions
- NS surface temperature evolution is governed by neutrino emission from the whole volume
- Neutrino luminosity depends on the composition of the strongly interacting dense NS core Part 2

- New constraints ⇒ better models of strong interactions inside NS core Possible phase transitions:
- new puzzles for EoS studies
- new channels of neutrino emission

Contribution to the NS cooling rates - hyperon puzzle II?