ELECRIC CHARGE IN STARS

M. 1. Krivoruchenko
ITEP, Moscow

Lectures plan:

1. The formation, life and death of stars.

2. Rosseland's paper (1924) with a particular solution of hydrostatic
equilibrium for a self gravitating two-component charged fluid.

3. Singular differential equations. Poincare’s theorem on analyticity.

Dyson’s argument.

General solution.

Relativistic theory of self gravitating multicomponent charged fluid.

Maximum electric charge of galaxy.

Open questions.

e
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Prague, 28 September 2021



Alphonse Mucha



loannis KeppLeri
Mathematici Cerfarei
hanc Imaginem,

Johannes Kepler

# parameters
e Ptolemy 77%x(2 + 2) = 154x2 = 308
e Copernicus 34x(2+2)= 68x2 =136
radius + period + 2 Euler angles to fix inclination of a circle to the ecliptic/deferent plane

e Kepler (6+1)x(2+3)+2=16+(6+1)x3 =37

semimajor axis + eccentricity + 3 Euler angles to fix inclination of an ellipse to the ecliptic plane



Stellar evolution

Giant Molecular Cloud
in a galaxy
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MMiIky Way ~ 10%2 M@
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Gravity rips the cloud apart
as long as the substance is transparent

Jeans instability:
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Not massive enough to sustain hydrogen fusion

Stellar evolution

oraact ‘ Brown dwarf
rotostar

‘ M < 0.07 M
R>Rz, M~Mg, T~10*K Star burning
center is like a black body hydrogen

Gravitational compression takes

t ~W, /Ly ~(GM?/Rg)/Lg ~ 3%107 years

] Planetary nebula White/Black
Red giant Dwarf, M < 8 M

R~ 104R®, M ~ 10 M@,
T core™ (108_ 109) K . Z. ‘ O

Neutron star
M<2Mg, R~ 10 km

-)

Supergiant
burning carbon
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Nuclear fusion takes ®
. )Mg [(m Lz) ~ 100 years Black hole
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Serpens constellation
one of 48 constellations described by Ptolemy
today 88 constellations are identified
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Eagle Nebula
optical image
the hydrogen gas is ionised by radiation from hot young stars
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McNeil's nebula was discovered by amateur astronomer
J.W. McNeil Il in January 23, 2004.

New star emerges from dust cocoon

By Dr David Whitehouse
BBC News Online science editor

An amateur astronomer in
the US has detected the
emergence of a young star
from the cocoon of gas and
dust in which it was born.

Such an event has only rarely
been recorded by astronomers.

"This is exciting for all

astronomers, especially those
interested in the birth of stars,
University of Hawaii astronomer Bo Reipurth told the BBC.

The new object had not been ohserved

, in the gas cloud before
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Orion Constellation
(named after Orion, a hunter in Greek mythology)
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McNeil's nebula illuminated by protostar V1647 Orionis
optical image
d = 1500 light-years away
R/Ry ~ 3 & M/M;~08 & L[L, ~9
- density is insufficient for the fusion reactions
of hydrogen in helium to begin

V1647 Orionis is highly variable in luminosity. The nebula was not seen
in 2005 -- 2008 years and in 2018 -- ...
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Stellar evolution
Past, present and future of the Sun (and Earth):

HacTe MONeKynapHoro obnaxa NAaHeTApHAR TYMAHHOCTE

NpoTo3eelna KpacHbIA rMradT BenuiA Kapnug

Haksano TepMOoAaepHORA PEAKLMA HacToauwee (4,57 mapa neT)

e The good news is that the Sun will not explode as a supernova, because its
mass is too low.

® In ~ 5 billion years, Earth will be inside the red giant, which the Sun will turn

into.
Rread giant/R® ~ 102 - 103 vs. R@orbit/R(D =215

® In ~ 4.5 billion years, the Andromeda — Milky Way galactic collision is predicted
to occur. The good news is that the probability of influence of the collision to the
evolution of our solar system is small.

Anyway --- develop science in order to have an opportunity
to move to another planetary system and/or galaxy
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Canis (Dog) Major constellation & Orion constellation

Betelgeuse @

o. . Orion's Belt

[ ]

- ® Rigel

“Star of stars”
(Homer, the lliad)
“Morning star”

d = 8.6 light-years




F. W. Bessel (1844) argued that Sirius is a binary system
Sirius A, Main sequence star: M~ 2M, R~1.7R; L~ 25L;
Sirius B, White dwarf: M~ Mg R~Rg
orbital period ~ 50 years, with a separation of about 20 AU
20 AU ~ the distance between Uranus and the Sun

SIRIUS B
%

SIRIUS A SIRIUS B
ORBIT ORBIT

d = 8.7 light-years from the Earth
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Canis (Dog) Major constellation & Orion constellation
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Name

Galaxy

Star Type

Mass (M)

Age

Effective Temperature
Colour

Constellation
Naked Eye Visible
Radius (R;)
Luminosity (L)
Distance from Earth

NB: Rg°bt/R, =215

NB: Distance from Earth,
Betelgeuse vs. SN1987A:

BETELGEUSE VS. THE SUN

Betelgeuse

Milky Way

Red supergiant star
~ 5

~ 8 Myr

~ 4000K=1eV
Red

Orion

Yes

~ 240

~ 37000

~ 500 Light Years

550 : 168000 -» 10°

The Sun

Milky Way

Main Sequence Star
1

4.5 Gyr

5772 K

Yellow (Atmosphere)
White (in Space)
N/A

Yes (but don't look at it!)
1

1

500 Light Seconds

# neutrinos = (dSN/d,z.et‘ﬁgwse)2
more detected neutrinos !!

Kamiokande Il (1987) - SuperKamiokande 3000 - 50000 tons of pure water

10 events

- 108 events


https://www.universeguide.com/blogarticle/what-is-declination-and-right-ascension
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Stellar evolution: Theory described applies to all objects

in hydrostatic equilibrium
Low-mass stars Wwh-mass stars
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WHAT ARE STARS:-

EQUILIBRIUM
EQUATIONS

MODEL SOLUTIONS




FROM THE FIRST LECTURE, IT SHOULD BE TAKEN OUT THAT:

1) The origin of stars begins in giant molecular clouds.
2) The clouds are fragmented into smaller parts due to the Jeans instability.
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3) The fragmentation process ends with formation of a protostar when the
substance becomes opaque, with a mass 0.01 Mg < M <30 M.
4) Further evolution depends on the mass.



Low-mass stars High-mass stars

Red giant IF:T;DFIT”r A L )
' VAbSELTIONIS Red supergiant

Arcturus
\ DOeielgeuse

nehula

Eagle Nebiia

Supernova
K / S far

Mebula)

The left track, to which the Sun belongs, describes the evolution of stars

a)
with M <8 M, . These stars go through the stages of the main sequence,
a planetary nebula, a red giant and a white dwarf.

b) The right track describes the evolution of more massive stars. At the final

stage after the formation of a red supergiant, it ends its life with a
supernova explosion, after which a neutron star, or black hole, is formed.

We have considered several examples of stars at various stages of their evolution.
We specified location of the object in our Galaxy, location in the sky,
view in optic and the main parameters: mass, distance from the Sun etc.



Non-relativistic theory with Newton gravity

Ernest Rutherford & W.D. Harkin, chemist 1920: conjecture on neutrons in nuclei
James Chadwick 1932: detection of free neutrons
Arthur Eddington 1920: conjecture on

burning hydrogen to helium as a source of energy of stars

AE = Am_  c?

Gravitational compression vs. Nuclear fusion:
t ~W,/Ly ~(GMg?*/Rg)/Le ~ 3%107 years

t ~Am,,, Mg [(m Lg) ~ 10 years

Mr. S. Roéseland,

Arthur Eddington

Electrical State of .a Star. By S. Rosseland.

(Communicated by Prof. A. S. Eddington.)

Svein Rosseland M.N., 84, 303, 1924,



Non-relativistic theory with Newton gravity

Two-component charged fluid:

gum—

o — mo + ey
N,=N ,axp( ;ﬁ; ¥)

(— Mo - Zey)

Nr=Nmep T

_ T s
Pe = 4ﬂ_v¢

4 1 oo
Pt oG

Pe = el Np — GNE

p=MN_,+mN,



Non-relativistic theory with Newton gravity

Particular solution for:

W M —m
:> —_— T
" (Z+ e
Pe . A2 P Ao = ——~ 1.25 x 103
€ Lic M Gm;



Non-relativistic theory with Newton gravity

Questions appear:

1. Poisson equations are second-order equations.
The second solution has been lost.

2. Status of a locally neutral substance from the point
of view of differential equations?



Relativistic theory with GRT

PHYSICAL REVIEW D VOLUME 12, NUMRBER 10 15 NOVEMBER 1975

Internal structure of multicomponent static spherical gravitating fluids
E. Olson and M. Bailyn

Physics Department, Northwestern University, Evanston, Illinois 60201
(Received 26 March 1975)

One-component neutral fluid

unknown functions H equations H
n number density of particles (1) uwu,=1  fixing proper time (1)
u* four velocity of fluid (4) C(g*v)° = O coordinate conditions (4)
g" metric tensor (10) Zw=0  Hilbert-Einstein egs. (10)

15 15



Relativistic theory with GRT

PHYSICAL REVIEW D VOLUME 12, NUMRBER 10 15 NOVEMBER 1975

Internal structure of multicomponent static spherical gravitating fluids
E. Olson and M. Bailyn

Physics Department, Northwestern University, Evanston, Illinois 60201
(Received 26 March 1975)

One-component neutral fluid

unknown functions # equations #
n number density of particles (1) uwu,=1  fixing proper time (1)
u four velocity of fluid (4) C(g")° = 0 coordinate conditions (4)
g" metric tensor (10) Zw=0  Hilbert-Einstein egs. (10)
15 15

Two-component neutral fluid
unknown functions #

n, number density of particles (1)
n, number density of particles (1)
u four velocity of fluid (4)
g’ metric tensor (10)

16 =15 + 1



Prescription: Add to the 15 field equations
THE MINIMUM TOTAL ENERGY REQUIREMENT
8E/8n, = O with 8N, = 8/ndV = 0O

with respect to variations of the partial densities n,
The variation gives essentially Gibbs’ conditions:

H; + mig; = constant (non-relativistic form)



N-component charged fluid in chemical equilibrium

uu,=1  fixing proper time (1)

C(g")° = O coordinate conditions (4) TOV
Zw =0  Hilbert-Einstein egs. (10) equation
Fw., = J¥ Maxwell egs. (4)

S5E/n; =0 under global conditions 6N, = O
&llocal Ty ,p; = 0 fora=1,. M (N-M)

18+ N-M + 1

n; number density of particles with charge e,
under the local constraints Ty, p;, = 0 fora =1, . M| (N-M)

u four velocity of fluid (4)
g"" metric tensor (10)
AY vector potential (4)
where J¥ = (Z.e;n;)u¥ 18+ N-M

EQUILIBRIUM EQUATIONS ARE THEREBY DETERMINATIVE



Gibbs' conditions (~ 1880) in Newton gravity, integral form;
gravity is a background

K + myp; = constant /_VA =
N
N

O. Klein (1949) in GRT, integral form;
gravity is a background

(- 900)/2y = constant

Kodama and Yamada (1972) in GRT, differential form;
gravity depends on the matter

s |4 (0s)-1 @s{:ﬂ o } 5> TOV

— K 2, —p;re ,
r \0p;/ 2 0p; Zf: 0 jﬂjr equation

Olson and Bailyn (1975) in GRT + EM,)differential form;
gravity depends on the matter

5.\ &M2\ 8p M 4Anl -> TOV + OB
Zn, (B_ET) = i’-c-ifz +E::' —_—[}-' lE”‘ an) equation




ELECTROMAGNETIC FORCE
VS.
GRAVITATIONAL FORCE:

€ 2

= — ~ 1.25x 10°°
Gm?

A

In complete screening — gravity plays the dominant role
for stellar structure

Hydrostatic equilibrium equations are normally
supplemented by:
LOCAL ELECTRO-NEUTRALITY CONSTRAINT

WHAT IS THE ORIGIN?



HYDROSTATIC EQUILIBRIUM EQUATIONS
FOR A SELFGRAVITATING TWO-COMPONENT CHARGED FLUID
BELONG TO THE FAMILY OF SINGULAR DIFFERENTIAL EQUATIONS

THE MAIN BREAKTHROUGH OBSERVATION:

The origin of the local electro-neutrality is

similar to: A e -%E—-—_:-—u—}—x, Oéxgl;
Ag = A constraint, leading to

the loss of initial condition!

BacnabeBa Azenanza BoprcoBHa
The example is from Byry3os Baaentun denoposuu

the monograph of MSU

. ACUMIITOTUUECKHUE METOIHBI
mathematicians:

B TEOPHHU CHHIVYJIAPHbBIX BOSMYUIEHHUHA

How fundamental is LEC in physics?

e ABSOLUTELY FUNDAMENTAL FOR ISOLATED SYSTEMS

(thermodynamics)
® HOWEVER DOES NOT APPLY TO SYSTEMS IN EXTERNAL FIELDS
incompatible with multi-component Gibbs’ conditions



HYDROSTATIC EQUILIBRIUM EQUATIONS
FOR A SELFGRAVITATING TWO-COMPONENT CHARGED FLUID
BELONG TO THE FAMILY OF SINGULAR DIFFERENTIAL EQUATIONS

The problem is to construct
the general solution

SOME OF THE PROPERTIES OF THE GENERAL SOLUTION
CAN BE FORESEEN ON THE BASIS OF
THE FOLLOWING SIMPLE ARGUMENTS:

(TWO HINTS ©)



MAXIMUM CHARGE OF STAR

lonosphere
& e’AN ’ GM AN m
e P s P D
o
+ RS RS
+
M a T
+ + — ANp SG—;mPN

+ e Lve o

+ T 0<Q <150C.

A V() EXPECTED TO FOLLOW
r FROM THE GENERAL SOLUTION

See also: How much electric surcharge fits
on ... a “white dwarf” star?

American Journal of Physics 89, 291 (2021).
Parker Hund and Michael K.-H. Kiessling




MAXIMUM CHARGE OF STAR

Electrosphere
e’AN GM AN m,
), — <>
"/ - RS RS
M M
- - = Ay, < M .
_ e M

— ~0.1C<Q <150C.

EXPECTED TO FOLLOW
FROM THE GENERAL SOLUTION

AV(I’)

,
o ——

\/:co/m:are:

e One mole of 12C nuclei has the total charge of Q = 600000 C.
e Earth: Q =- (40000 ... 57000) C >> 0.0003 C = 10%! e(Mg/M,)
e The solar charge |Q| < (0.4 - 1)x10'8 C, lorio (2012).




MAXIMUM CHARGE OF GALAXY

Electrosphere
e’ AN 2 GMgANeme
>
Rg Rg
GM m, v
= AN, < — ~ £
€ Y Milky Way

-10"C<Q, <10"C.
Electromagnetic interaction of galaxy and star:

A V(f' ) VVpotential -

r
_— ~ <K

f N
NB: Ry way ~ 10° light-years

MMiIky Way ~ 10%2 M@
T@core~ 107 K




HYDROSTATIC EQUILIBRIUM EQUATIONS
FOR A SELFGRAVITATING TWO-COMPONENT CHARGED FLUID
BELONG TO THE FAMILY OF SINGULAR DIFFERENTIAL EQUATIONS

SECOND HINT:

The general solution is not regular in the
gravitational constant G at G=o, as indicated by

e the Poincare theorem on analyticity and

1

HELPFUL IN CONSTRUCTING THE GENERAL SOLUTION
DETAILS PROVIDED LATER

e Dyson’s argument
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MODEL SOLUTIONS




WHAT ARE STARS:-

EQUILIBRIUM
EQUATIONS

MODEL SOLUTIONS




A. Two-fluid model

PHYSICAL REVIEW D 97, 083016 (2018)

Hydrostatic equilibrium of stars without electroneutrality constraint

M. L KJ'i‘vomf:h(:nko:I'2 D. K. Nadyoz.]1i11,|‘3 and A.V. Yudin""

Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow, Russia
“Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
*Kurchatov Institute, Akademika Kurchatova PL. 1, 123182 Moscow, Russia

Starts from multi-component non-relativistic Gibbs' condition:

li + mjpa + Lepg = const.

e + Mepa — €PE = CONst,

i =ions, m;=Am, m,=931MeV

e = electrons , m_ = 0.51 MeV
¢ = electro-static potential
s = gravitational potential Also discussed in:

Electrically nonneutral ground states of stars
PHYSICAL REVIEW D 103, 043004 (2021)
Parker Hund and Michael K.-H. Kiessling



A. Two-fluid model

Rosseland equations T>0 Two-fluid model T2 0
N - N Caxp(—MEt+e) B
No=Neexp kT I + mypa + Lepg = const.
e + Mepa — €pE = coONst,
- ° (—Mop —Ze
N,=N,exp (ﬁT ¥)
| 1 _,
Pe=— — VY
: 4 A%&G — 4ﬁGPme
Npp = —47pe.
_ _I__ 9 bl e
R _
Pm = Mini + Melle,
Pe = Zenj — €ne.
Np(Zpe + 1) = —4nG(mi+Zme) pm-

ANp(mipte — mepi) = —4me(mi+Zme)pe.



A. Two-fluid model

Equaiton of state of matter with polytropes:

® Pressure B = [{kniﬂmk, k=(ie)
® Density nk = nkofy

e Chemical potential L, = /Uko‘gka

_ 1/n
o =K, 1+ nk)nko ‘.
e Dimensionless coordinate x:

AT
ArGmi(mi + Zme)nio

2
" = Toi. re =



A. Two-fluid model

THE BASIC SYSTEM OF EQUATIONS

ﬁ:}:(ge —+ i',ljgi) — —(9?1 —+ Amﬂeﬁge)
Ar(fe — AmAify) = —Ag (07 — A0

C Ha4asibHbIMU YyCJloBUSMU

0 (0) =1, 6.(0)=0.
U napameTpamu

A neo | (= LEC) A — AR
Zﬂ,ig 1
i 1 + 1) F’l 2 _.2
i&i — JH 0 ~ ( }?) 0 << 1 ;&G — Z €2 p—
Z [Leo (1 + 1e) Peo G



HYDROSTATIC EQUILIBRIUM EQUATIONS
FOR A SELFGRAVITATING TWO-COMPONENT CHARGED FLUID
BELONG TO THE FAMILY OF SINGULAR DIFFERENTIAL EQUATIONS

THE BASIC SYSTEM OF EQUATIONS

Nz(be + Aibh) = —(6" + A Aebl)
Dy(fe — AmAith) = —Ag(0)" — Aeb)
0 (0) =1, 6(0)=0.
0<x=<x,.

1. Cauchy problem for the 4-th order ODE
2. Singularly perturbed system, with s = 1/A; <<<1.
3. Similar to the Tikhonov system of equations:

p | —g';_“F(Z y, X, 8), —f(Z Yy, X "),
o< x << X,
L 2(0)=2" y(O)=yO.



ROSSELAND-TYPE REGULAR SOLUTION
TO THE UNCONSTRAINED HYDROSTATIC EQUILIBRIUM EQUATIONS

B. Two-fluid model with equal polytropic indices
A particular solution for 6.(x) = 0.(x) = 19(})

and . = 7, = nwith T AA
N — J'\/ l N j\i .
can be found from the Lane-Emden equation

A;EQ(;IT) — _HH("E) R. Emden

Free (!) parameter A, becomes function of A:

*\G(l——ﬁl) — (1—1’\11]1'\'1)
Ag(l—k:\l) -+ 1"\m(1_i'\n1*’"li) |

NB: but A, measures deviations from LEC

A, = ANE =

c

The limit A, — oo 1s smooth, the solution is regular.



ROSSELAND-TYPE REGULAR SOLUTION
TO THE UNCONSTRAINED HYDROSTATIC EQUILIBRIUM EQUATIONS

The limit A, — oo 1s smooth, the solution 1s regular.
du

Similar to A, e-c-i—-—-—-u—{-x 0<LxLl; uO=1.
X
Ag = A constraint leading to
the loss of initial condition
In the problem A, the regularity condition leads to
A, = A8(Ag) and

the loss of the initial condition.

For A, = A.J8(A;) the regular solution is exact.

ot T=t/¢,

x (¢, e)—gos (X () 1 1)\ (7). e=1/A, <
— 0

Taylor  Laurent: f(7:6)= D &' f.(7)



ROSSELAND-TYPE REGULAR SOLUTION
TO THE UNCONSTRAINED HYDROSTATIC EQUILIBRIUM EQUATIONS

E. Global stellar parameters

The mass of the star takes the form
p,, = mass-energy density

Zlteo

R
M, = /—lm (nym; + neme)df
0 drGmi(mi + Zme)nio

12—

d
— —4??:'3}110 ??'111’2 I (Bo+Aib;)

a.r I=Tp

The total stellar charge (at the boundary of the
component) is equal to

p.= charge density

R, J
Qs = / ZETLI—EI?e)d!
0

Ze d
— —47;[,?11%{}42 T (fe—AmAifh) .




Electro- and ionosphere of stars in two-fluid model

Electron envelopes @ boundaries of

e solids

>W~3eV

e strange stars 2> W ~ 30 MeV
e distinct phases
in nuclear matter > W ~ 30 MeV

How it looks in stars:

O A __ions

eeb

\—electrons

>

X, X



Electro- and ionosphere of stars in two-fluid model

Electron envelopes @ boundaries of

N e solids >W~3eV
N e strange stars 2> W ~ 30 MeV
- e distinct phases

in nuclear matter > W ~ 30 MeV

How it looks in stars:

, O A __ions
- __electrons

f ‘9eb
X, X
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Electrosphere of stars in two-fluid model
A. A polytropic model

Start with Gibbs' condition:
[le T+ Mepa — €PE — coNst,

Applying Laplacian, we get the Thomas-Fermi

equation: §
0 G'm
Appie = 4me ne (1 — )

2

with the boundary conditions:
e u_ is continuous
e 1 ' is continuous due to the balance of
pressure & EM + gravity:
1 dF, eQ)s  Gmellg

_ — 1
Ne dr R? R?




Electrosphere of stars in two-fluid model
A. A polytropic model

Dimensionless units:

Me

Am =

My

Ha0
r=Rs+ray, 1i=
3 alls a Are2 (1_/\1%1/)\@) a0

The main equation:

4?0
2 — g% (q)).
with the boundary conditions 0,(0) = 1
db, Pan
— = —(gs + )\m
dy ly=0 (g )\/(1 + e ) Pao(Ac — A2))

GM?
where = ArR4  THE PROBLEM IS THUS FORMULATED.



Electrosphere of stars in two-fluid model
A. A polytropic model

The main equation: 20

dy?

looks like the 2" Newton law, y is time,
the potential and the energy:

= 0 (y).

6 1+7, 9!2
Vb)) = —| o] W=-—=+4+V(#,)
: 147, 2
sz(o)
IiT — a —
0 D 1+ 1,
0.(0) = 1 3 TYPES OF SOLUTIONS:

1. W,>0 charged stars
2. W,=0 neutral stars
3. W, <0 (compressed states)



Electrosphere of stars in two-fluid model
A. A polytropic model

§70 The Thomas—Fermi equation
QUANTUM MECHANICS . X(r) ~ @elr)/r
NON-RELATIVISTIC THEORY I ‘ l
OE |
by r
L P, LANDAL o .30 LTz o | |
o W <0 | !
Volume 3 of Course of Theoretical Physics X 0a 0 | }
|
(o} ' _
W, =0
c 5 & —e EIC- TR
r
>
00
Ba(0) = 1 3 TYPES OF SOLUTIONS:

1. W,>0 charged stars
2. W,=0 neutral stars
3. W, <0 (compressed states)




Electrosphere of stars in two-fluid model
A. A polytropic model

Estimate of thickness of the electron envelope:
aB s My e
(%) 3
3/5 1/5
~ 2.2 x10” 16( ) (MG)

Yo ~ 106 ag for R, = Ry, M, = Mg.

.'flal

n=23/2: r "~

0 \/ Ao 13 %1070 (e 7
n=3: R a3/2 M, T M,

Yo&e ~ 1 millimeter for R, = 10 km, M, = M;.



A. General properties of solutions
HINT #2

e Poincare theorem on analyticity:
Solutions to ODE systems, when they exist,
are analytic functions of the initial
coordinates and parameters in the region
of analyticity of the ODEs.
Since analytic functions are determined
by their singularities, one can talk about
THE SINGULARITIES
instead of THE REGION OF ANALYTICITY.

e Dyson's argument (1952)
provides an effective qualitative
criterion for non-analyticity of observables &
in terms of the system parameters.




A. General properties of solutions

How do physicists understand the Poincare theorem?
THE ANALYTIC § MATRIX

A BASIS FOR NUCLEAR DEMOCRACY
by
GEOFFREY F. CHEW

Dop-
MaJabHO YKa3aHHAas CBA3b SIBJASETCH OTPAKEHUEM HHTEEE-
TUBHO NOHATHOH Teopemul Ilyankape, Kotropas, rpyb6o
TOBOpSH, INMIACHT CJAenylolee: eclu Kodpdpuuuents gudde-
peHuHaJbHOro ypaBHEHHS aHaJHUTHUYECKH 3aBHCAT OT He-
KOTOPO# BEJIMUHHBI, TO H pelIeHHs ypaBHeHuda Oyayr aHa-
JUTHUYECKHMH (YHKUHSMHA 3ToH BeJu4YuHBl. HMHBIMH chao-
BaMu, [lyankape yTBepikIaer, 4yTO B TEODHAX, OCHOBAHHEIX
Ha pHpdepeHilHaIbHBIX YPAaBHEHHUAX, cCOXpaHsieTcs Joban
AHAJHTHYHOCTb, KOTOPYIO MBI BBOJHJIH B KO3(PHIUEHTHI.




A. General properties of solutions

Poincare theorem on analyticity
How it works?

Example:
Asze-gf—z—-u—}—x,0<x<1; 1 (0)=1.
X
du —u+x :
= , T.h.s. has a simple pole at ¢ =0.
dx &

\

Solution: u, (x)=(14¢)exp(—x/e) +x—e.

The simple pole of ODE turns to
the essential singularity of the solution



A. General properties of solutions

a>0: 0<Hgyp  Dyson's argument ) @
in QED =
“batan of posithors “dston” dectross
—L— —L—
++"' BY -
R TUNNELING - - _
+ + < > -

If  <0: E,, <E,.=0forN_.=1/a’2 collapsing

et+e-~

G”""’Z — o //0%i ( i ‘%l e- az//
VACUUM IS UNSTABLE & o =0 A BRANCH POINT



A. General properties of solutions

g>0: 0<H, Dyson's argument )
g <0: -0 <H,
in Quantum mechanics >
| Vi N
~ | BOUND (g > 0) AND UNBOUND (g < 0)
AN
HAMILTONIANS ARE
o / . \ QUALITATIVELY DIFFERENT
V(x) = mw?x2/2 + gx4 ‘
Eo = Eo(9)

g = 0 is a branch point of E,

A. B. Typ6unep, YOH 144 35 (1984)



A. General properties of solutions

Dyson's argument )

in Classical theory >
# 1. A school level example: Stone thrown down

FINITE (g > 0) AND INFINITE (g < 0)
MOTIONS ARE
QUALITATIVELY DIFFERENT

L]

g = 0 is aroot branch point
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Dyson's argument )

in Classical theory >
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A. General properties of solutions

Dyson's argument )

in Classical theory >
# 1. A school level example: Stone thrown down

FINITE (g > 0) AND INFINITE (g < 0)
MOTIONS ARE
QUALITATIVELY DIFFERENT

L]

g = 0 is aroot branch point




A. General properties of solutions

Dyson's argument ) @

in Classical theory 4 >
# 2. Viscosity n in Navier-Stokes equation

(% + (vV)vj —-Vp+ nAv+ gV(Vv)

Example: water flow in a tube:

(Rz—r) n > 0 IS OKEY
n < 0 is NOT PHYSICAL
TWO STRONGLY DIFFERENT CASES

L]

n = 0 is a singular point of v

4771



A. General properties of solutions

Dyson's argument ) @

in our case: >
G > 0 STARS EXIST




A. General properties of solutions

Dyson's argument 0 @

in our case: >
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A. General properties of solutions

Dyson's argument

| ©

in our case:
G > 0 STARS EXIST G < 0 STARS DO NOT EXIST

TWO CASES LOOK QUITE DIFFERENT

L]

G = 0 is a singular point of
solutions of hydrostatic
equilibrium equations




A. General properties of solutions

G<0: 0<Hg Dyson's argument

G > 0 STARS EXIST

| ©

in our case:
G < 0 STARS DO NOT EXIST

TWO CASES LOOK QUITE DIFFERENT

MOREOVER,
RADIUS AND MASS OF STAR:

G = 0 is a singular point of Ziuo

equilibrium equations o

= 747r-r’g’n.iomix2di (0.4+M;8;)
T

0= ArGmy(m; + Zme)nio

solutions of hydrostatic i

M, = ]4W-r2(ni-mi+nc-mc)d-r

T=rhL



A. General properties of solutions

Dyson's argument ) @

in our case: =

The general solution should be sought
in the class of functions
that depend on Ag at Ag = « in an irregular manner.



Exactly solvable model

B. Two-fluid model with unit polytropic indices

The above statements can be precisely 1 @
formulated using the model v, =%, =1. In terms of ===
o = wby () g <
. . o=—====
the main system of HE equations become

—|— \ﬁul = —(¢i + AmAepe)
— —i'\G(*f-?i — Ae*ff”e)

We are looking for solutions in the form ¢x = axe?®  and obtain

\Lﬂl*xlﬁ"”l

The eigenvalues are as follows:
* 1
32 = Ac(1+AA) — (1+A2 AjA.
Tt 24-\1(1—’—:\111){ G( ) ( N m )

+ \/ AZ(14A5A0)% — 20 [(1=AmAiAL)? — AjAe(14+Am)2] + ( 1+A‘12n:\i:\e)2}



Exactly solvable model

B. Two-fluid model with unit polytropic indices

A
1+AjAe

Al(l + Amj

Ae(14+A o ===
3?2 = — 1( tl )—F()(AGIJ.

The general solution: S =5 | & f,=/_|
oK () = ayq sinh(Byx) + age sin(Fax),
with the constraint
k11 + akef2 = 1.

to fulfill $,(0) = $,(0)” =0, ¢, (0) = 1.

NB: [lna ogHOATOMHOrIo naeanbHOro rasa
nokasartenb agmabatbly =5/3,yHacy =1+ 1/9=6/3.



Exactly solvable model

B. Two-fluid model with unit polytropic indices

The general solution:
o () = agq sinh(S1x) + ago sin(Sax).
with the constraint

o101 + aroPs = 1.
Regular (/1 =0) solution: o, =0,
(1+A1)35 = 1+AmAe.

(1—-AmAi) 535 = Ac(1—Ad).

IS POSSIBLE FOR Ag(1+A;) — (1—AmA;)

_ ATEeg __
A, = A8 =

Ac(1+A;) + An(1-AnAy) |



045

02r

00r

We got a two-parameter set of the solutions.
CONCENTRATIONS AT THE CENTER OF THE STAR

ARE ARBITRARY,

however, in an exponentially small vicinity
of the regular solution.

__bulk charge

__bulk charge + electro/ionosphere

101
08

06

9s

qds+d,

6 8 10
Ocp- Oip

12

14

1.0000

0.9995 |

0.9990 |

0.9985

0.9980

q;+q,

-0.2

01 00 01 02
Ocp- O

FIG. 4: (color online) The bulk charge ¢s and the total charge
qs + ge as functions of the difference ©., — O;, for a mixture
of electrons and protons (Z = A = 1) and for A; = A,,.

NB: (Qs“"(}.’e)max — 4/2

0.3

04 05



Exactly solvable model
B. Two-fluid model with unit polytropic indices

WHAT WE CAN LEARN:

m In the two-fluid model with unit polytropic indices, it
is possible to explicitly construct the general solution
describing charged stars with electro- and
ionospheres.

m The guiding parameter of the problem is A,

m In an exponentially small neighborhood
of A,=A/S%9, the electron and ion densities can be
varied without restrictions.

m The stellar envelope is sensitive to exponentially
small deviations of A, from A 9.



General solution to
the unconstrained hydrostatic equilibrium equations

The general solution is of the form:

O« = ko + Yk.

1

regular irregular

In inner layers of the star y, <
Small deviations in:

Ahe = Ao — A8 |AA,| < 1

Linearization of the main ODE system gives

Ax(xe +Aixi) = —(mbip " xi
A Aol T e + AmAALTS),
/_\.-_13(3(6 — 1'\1ni'\ki’(j) = —;\G(-}?itg’%_lxi

—Aeonebe e — AN,
w(0) =x1(0)=0 € initial conditions



General solution to
the unconstrained hydrostatic equilibrium equations

A. Irregular component in the WKDB
approximation
irr

Looking solutions in the form: Xk = Xk T Xko

Following the WKB method: General B B particular

T o () e /A~ S (s ) solution of  solution of
wher?ek |£ °) = : gk(i)(?‘{p( as(r) homogenious inhomogenious

equaiton equaiton

A ( Az
galr) | gelr) |

gk (1) = gro(r) + = + —
Aq Ac

m To the lowest order

nib (; ') + AjAe °n 6‘”5_1(;{:’)
S A = :i: €
+(2) / A1+ Ay

dx’.

Finally (cf.: 1/Ag € 72)

- sinh (vAgSy () 1
XkD( ) — Ck[] ‘f — ({) ) —+ ()(1'\(}9)
el L _I_ el




General solution to
the unconstrained hydrostatic equilibrium equations

B. Correction to the irregular component

irr

O« = Oxo + Yk. Xk = X&' + Xko

Looking for a particular solution of the linearized
inhomogeneous equation

Az(xe +Aixi) = —(nifi’?é_lxi
A m Aol T e + AmAALT),
AI(}(B —AmAi}(i) = —1‘\(}(?]19;3_1}@

e_]- e
—Aeonlelle ™ e — AN,



General solution to
the unconstrained hydrostatic equilibrium equations

B. Correction to the irregular component

O« = Oxo + Yk. Yk = XA + Yko

m Finally, the irregular part takes the form

. Go . , ; , 0o () mi+A; | 0i(x) _
(@) = - msmh(\/@nu(x))—c,m/ﬂcs+(o)[a,ﬂ<x3+x T AT ()

CioAs _ Obeo(z) mitA;s | Obeo(2)

Yo(z) = —I\/msmh(\/?c&(m))+cim/;m5f+(0)lmacﬂ(x) LTy (1+Ai)]

The general solution of the hydrostatic equilibrium equations
of a self-gravitating two-component charged fluid is known.

5

It was found only in 2018 through the efforts of Andrey Yudin
and his collaborators in ITEP.

These equations remained unsolved for almost 70 years.



Three exactly solvable models
of electrically charged stars
in hydrostatic equilibrium

Two-component charged fluid with polytrope

indices v, = . = 1in Newton gravity
e Discussed in these lectures

e P. Hund and M. K.-H. Kiessling, Electrically nonneutral ground states of
stars, Phys. Rev. D 103, 043004 (2021)

Incompressible two-component charged fluid with
polytrope indices n, = . = 0 in Newton gravity

e Appendix A in: M.I.K., D.K. Nadyozhin, A.V. Yudin, Hydrostatic equilibrium
of stars without electroneutrality constraint, Phys. Rev. D 97, 083016 (2018).

Incompressible three-component charged fluid
(neutrons, protons, electrons) with polytrope

indices v, =1, =7, = 0 in General Relativity

e N.I. Kramarev and A.V. Yudin, The structure of relativistic stars consisting
from an incompressible substance in the absence of a strict
electroneutrality, Letters to Astronomical Journal, 47, 646—-656 (2021).



CONCLUSIONS

m A general solution of the hydrostatic equilibrium equations in
the absence of local electroneutrality for a two-component charged
liquid in the Newton theory of gravity and GRT is described.

m The problem belongs to the class of singular differential
equations. The general solution is singular with respect to the
gravitational constant G at G = 0, in the agreement with the
Poincare theorem and Dyson’s argument.

m We need to go beyond the framework of perturbation theory. To
construct a general solution, one can apply the WKB method, well
known to physicists in quantum mechanics.

m The electric charge of stars varies within
Q =-0.1-+100C.

s -



CONCLUSIONS

m Three exactly solvable models of stars for polytrophic
equations of state of matter are currently known.

m The structure of electro- and ionosphere of stars are
described.



nnew

UNSOLVED PROBLEMS

Possible applications of the developed techniques
include:

Maximum charge and charge distribution in galaxy with a
charged black hole in the center.

Jeans instability in charged giant molecular clouds.
Equilibrium equations for charged fluid in accretion disks.
Generalization of TOV-OB equations to rotating stars with
magnetic field.

Electro- and ionospheres at finite temperature.
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Basic equations for N-component charged fluid

im, )2
am _ 4"1"?‘2 {p+ Q,.) 4]
l

dr ST 1

e - 2G'm |
Q@ = 4r2eM/? Z qin; et = —g11 = |1 = 2

- re

from 8E/3n; = O under conditions 8N, = O one gets

111y, . amn )2 Ary3
Apye BA/Q(ZR.Q _ AGru [m - Q n P] |

dr = r2c? 2027 2

Tolman-Oppenheimer-Volkoff equation for charged fluid

AP Q S qn; G(p+ %) P Q)?
dr 12 2Gm r (-r — Qdm) me 2 b= 212

V1= s | |
p is the energy density, ik=1,.N

Q is the electric charge inside the sphere of radius r
m is the mass of the star inside the sphere of radius r

P is the pressure

T. Kodama and M. Yamada, Prog. Theor. Phys. 47, 444 (1972),
E. Olson and M. Bailyn, Phys. Rev. D 12, 3030 (1975).



