
Theory of non-relativistic neutrinos
(and non-relativistic dark matter)

Lars Heyen & Stefan Floerchinger (Heidelberg U.)

EuCAPT Astroneutrino Theory Workshop, Prague
September 22, 2021.

STRUCTURES
CLUSTER OF EXCELLENCE



Motivation

Non-relativistic quantum field theory sometimes simpler

Condensed matter phenomena better understood in that framework

Neutrinos become non-relativistic at late times

Cold dark matter is also non-relatvistic

Non-relativistic limit non-trivial for real fields
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I. Scalars
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Literature

exact real scalar transformation: Namjoo, Guth, and Kaiser, “Relativistic
corrections to nonrelativistic effective field theories”

generalisation to arbitrary spacetime: Heyen and Floerchinger, “Real scalar
field, the nonrelativistic limit, and the cosmological expansion”

overview over different methods: Braaten, Mohapatra, and Zhang,
“Classical nonrelativistic effective field theories for a real scalar field”
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The starting point

We start with a known relativistic action S[φ] of a field φ, e.g. a complex
scalar field without interaction:

S[φ] =

∫
d4x

{
(∂µφ)(∂µφ∗)−m|φ|2

}
→ transform φ to a ’non-relativistic’ field ψ such that the action can be
expanded in momentum
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The c→ ∞ limit

A simple ansatz for this is to start with the equation of motion

1

c2
∂2
t φ− ~∇2φ+m2c2φ = 0

and assume that the energy of particle is close to its rest energy. The resulting
phase can be factored out as

φ =
1√
2m

e−imc
2tψ

Non-relativistic is here defined by the particle energy being close to the positive
mass pole of its propagator. The equation of motion becomes

1

2mc2
∂2
t ψ − i∂tψ −

1

2m
~∇2ψ = 0.
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The c→ ∞ limit

In the limit c→∞ the first term drops out and the resulting equation of
motion for ψ is the free Schroedinger equation.

−i∂tψ −
~∇2

2m
ψ = 0 .

This equation is first order in time derivatives while the Klein-Gordon equation
we started with is second order. The degrees of freedom we lost in taking the
limit is the information about antiparticles.
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Real scalar fields

The c→∞ limit fails for real scalar, where all terms would oscillate infinitely
fast. Starting at the action again

S =

∫
d4x

{
1

2
ηµν(∂µφ)(∂νφ)− 1

2
m2φ2

}
we can look at it from a Hamiltonian perspective

H =
1

2
π2 +

1

2
(~∇φ) · (~∇φ) +

1

2
m2φ2

with the equations of motion

φ̇ = π, π̇ = (~∇2 −m2)φ.
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NGK Transformation

Transforming φ and π into a single complex field with independent real and
imaginary part would keep the same number of degrees of freedom.
Namjoo, Guth and Kaiser found such a transformation for real scalar fields1

ψ =

√
m

2
eimtP1/2

(
φ+

i

m
P−1π

)
,

P =

√
1−

~∇2

m2

Where the non-local operator P can be understood via its Taylor expansion

P =

√
1−

~∇2

m2
= 1−

~∇2

2m2
− (~∇2)2

8m4
+ . . .

or via its momentum space representation

P =

√
1 +

~p2

m2
= m−1E~p

1Namjoo, Guth, and Kaiser, “Relativistic corrections to nonrelativistic effective field theories”.
8 / 51



NGK Transformation

This transformation is canonical and can be inverted as

φ =
1√
2m
P−

1
2

(
e−imtψ + e+imtψ∗

)
,

π =− i
√
m

2
P

1
2

(
e−imtψ − e+imtψ∗

)
.

At this point no information has been lost, the two descriptions are equivalent.
The equation of motion of the transformed field is

i∂tψ = m(P − 1)ψ
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NGK Transformation

The point at which we lose information lies in the expansion of this equation of
motion in p2/m2. To lowest order this is the Schroedinger equation, but higher
orders can be systematically obtained.

i∂tψ =

[
−
~∇2

2m
− (~∇2)2

8m3
+ . . .

]
ψ

The Lagrangian would be

L =
i

2
(ψ∗∂tψ − ψ∂tψ∗)− ψ∗m(P − 1)ψ

≈ i

2
(ψ∗∂tψ − ψ∂tψ∗) + ψ∗

~∇2

2m
ψ
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Adding interactions

Now we go to an interacting theory

S =

∫
d4x

{
1

2
ηµν(∂µφ)(∂νφ)− 1

2
m2φ2 − λ

4!
φ4

}
The additional term in the action adds a term to the equation of motion

i∂tψ = m(P − 1)ψ +
λ

4!m2
P−1/2eimt(P−1/2e−imtψ + P−1/2eimtψ∗)3

which contains fast oscillating terms that we expect to average out over time.
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Adding interactions

In order to get rid of the oscillating terms, we define auxiliary quantities and
expand them in frequency modes which are multiples of the mass

G = P−1/2eimt(P−1/2e−imtψ + P−1/2eimtψ∗)3 =

∞∑
ν=−∞

Gνe
iνmt

ψ =

∞∑
ν=−∞

ψνe
iνmt

Ψ = P−1/2ψ =

∞∑
ν=−∞

Ψνe
iνmt

We can further identify

Gν = P−1/2
∞∑

µ,µ′=−∞

{
ΨµΨµ′Ψ2+ν−µ−µ′ + Ψ∗µΨ∗µ′Ψ∗4−ν−µ−µ′

+ 3ΨµΨµ′Ψ∗µ+µ′−ν + 3Ψ∗µΨ∗µ′Ψν−2+µ+µ′

}
.
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Adding interactions

We can use this splitting to write down equations of motions for the frequency
modes

iψ̇ν − νmψν = m(P − 1)ψν +
λ

4!m2
Gν

The mode we will be looking at is the ground mode ψ0. In order to obtain its
dynamics we assume several quantities to be small. This includes all
non-ground modes Ψν and their time derivatives Ψ̇ν/Ψν , the interaction

strength λ and all appearances of ~∇2.
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Adding interaction

Expanding to second order in small quantities, we will replace every non-ground
mode by its truncated inverted equation of motion

Ψν 6=0 =
λ(1− ν − P)−1P−1/2

4!m3
Gν

Following this scheme and expanding all the P operators leads to

iψ̇s ≈−
1

2m
~∇2ψs +

λ

8m2
|ψs|2ψs −

1

8m3
∇4ψs

+
λ

32m4

[
ψ2
s
~∇2ψ∗s + 2|ψs|2~∇2ψs + ~∇2(|ψs|2ψs)

]
− 17λ2

768m5
|ψs|4ψs.
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Adding interaction

Translated back into an effective Lagrangian, this becomes

Leff =
i

2
(ψ̇sψ

∗
s − ψsψ̇∗s )− 1

2m
(~∇ψs)(~∇ψ∗s )− λ

16m2
|ψs|4

+
1

8m3
(~∇2ψs)(~∇2ψ∗s )− λ

32m4
|ψs|2(ψ∗s ~∇2ψs + ψs~∇2ψ∗s )

+
17λ2

9 · 28m5
|ψs|6.

which contains relativistic corrections, higher order interactions and derivative
interactions.
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Going to a cosmological setting

In cosmological problems we cannot always assume spacetime to be
Minkowskian. We will consider a scenario of expanding spacetime using the
Friedmann-Lemâitre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a(t)2 d~x2

(gµν) = diag(−1, a2, a2, a2)

The action of a free real scalar on this background is

S =

∫
d4x
√
−gL =

∫
d4x a(t)3L

L = −1

2
gµν(∂µφ)(∂νφ)− 1

2
m2φ2

=
1

2
(∂tφ)2 − 1

2
a(t)−3(~∇φ)2 − 1

2
m2φ2
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c→ ∞ in FLRW spacetime

The equation of motion of a free complex scalar in FLRW spacetime is

1

c2
∂2
t φ+

3H

c2
∂tφ− a−2~∇2φ+m2c2φ = 0

where H = ȧ/a is the Hubble rate. As in the Minkowskian case, we can now
replace transform the field according to

φ =
1√
2m

e−imc
2tψ

and take the limit c→∞. We end up with a slightly modified equation of
motion

−i∂tψ −
3

2
iHψ − 1

2a2m
~∇2ψ = 0.

The expanding spacetime scales the spatial derivatives and introduces a
damping term.
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Covariantly non-relativistic?

Velocities being non-relativistic is a frame-dependent statement. We define the
frame in which the system is non-relativistic by chosing a timelike unit vector
uµ as its time direction.

uµuµ = −1

We define the projector perpendicular to uµ as

∆µν = gµν + uµuν

With this frame of reference a velocity vµ being non-relativistic means

∆µνv
µvν � (uµv

µ)2

18 / 51



Building the transformation

Staying close to the NGK transformation we want a generalized transformation
that is:

linear

local in the time-direction defined by uµ

an exact transformation to iuµ∂µψ = Ôψ

canonical (up to a constant factor)
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Covariant formalism

With these conditions for the transformation our ansatz becomes

ψ = α(φ+ iγuµ∇µφ)

where α and γ are both differential operators that do not contain uµ∇µ. For
Minkwoski spacetime, we recover the NGK transformation by chosing

uµ = (1, 0, 0, 0)T

α =

√
m

2
P1/2eimt

γ = (mP)−1
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Covariant formalism

The equation of motion for the relativistic field φ is

−gµν∇µ∂νφ+m2φ = 0

With this we can calculate the time derivative of the transformed field as

uµ∂µψ =[uµ∂µα+ iβ(−m2 +∇µ∆µν∂ν)]φ

+ [α+ iuν∂νβ − iβ∇µuµ](uµ∂µφ)

where we replaced the second order time derivative with the equation of motion
of φ. In order for this to be of the desired form, the first bracket has to be
proportional to α and the second has to be the same factor multiplied by iαγ.
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Covariant formalism

This leads to a differential equation for γ

uν∂νγ + iBγ2 − (∇µuµ)γ − i = 0

B = (m2 −∇µ∆µν∂ν)

Where there derivatives in spatial directions are something that γ can explicitly
depend on, while the time derivatives are not. This fixes the equation of
motion of the transformed field to

uµ∂µψ = [α−1uµ∂µα− iBγ]ψ
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Covariant formalism

The transformation is canonical (up to a factor) if we can find a generating
function F (φ, Im(ψ)) with

uµ∂µφ =
∂F

∂φ
, Re(ψ) =

∂F

∂ Im(ψ)

Such a function can be found

F (φ, Im(ψ)) =− Im(ψ)

(
Im(αγ)

Re(αγ)

)
Im(ψ)− 1

2
φ

(
Im(α)

Re(αγ)

)
φ

+ Im(ψ)

(
1

Re(αγ)

)
φ.

only if we assume the relation

|α|2 = (2 Re(γ))−1
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Covariant formalism

In order to further simplify the equation we can look at the real part of the
differential equation for γ which (assuming all eigenvalues of B are real) gives
us

B Im(γ) =
uµ∂µ Re(γ)

2 Re(γ)
− 1

2
∇µuµ

The real part of the right hand side of the transformed equation of motion also
contains

Re

(
uµ∂µα

α

)
=
uµ∂µ|α|
|α| = −1

2

uµ∂µ Re(γ)

Re(γ)
.

The two identities can be used to simplify the equation of motion to

i

[
uµ∂µψ +

1

2
(∇µuµ)ψ

]
= − [uµ∂µ arg(α)−BRe(γ)]ψ.
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Covariant formalism

The Lagrangian belonging to this equation of motion is exactly what we would
expect for a non-relativistic theory

L =
i

2
[(uµ∂µψ)ψ∗ − ψ(uµ∂µψ

∗)] + ψ∗ [uµ∂µ arg(α)−BRe(γ)]ψ

In Minkowski spacetime with uµ = (1, 0, 0, 0)T , arg(α) = mt and
BRe(γ) = mP we return to the Lagrangian of the NGK transformed scalar.

L =
i

2
[(uµ∂µψ)ψ∗ − ψ(uµ∂µψ

∗)]− ψ∗m(P − 1)ψ
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Application to FLRW

Going back to specifically FLRW spacetime, we now have another scale added
in H. For simplicity we will consider late times

H

m
� 1.

The three choices left for us to make are the choice of frame, the initial
condition of the differential equation for γ and the phase of α. For the first the
simplest choice is

uµ = (1, 0, 0, 0)T

With this the spatial projector and the differential operators become

∆µν = a−2diag(0, 1, 1, 1)

uµ∂µ = ∂t

B = m2 −∇µ∆µν∂ν = m2 − a−2~∇2
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Application to FLRW

With this the differential equation for γ becomes

uν∂νγ + i(m2 − a−2~∇2)γ2 − (∇µuµ)γ − i = 0

We expand γ in orders of H/m and chose as our initial condition that the
lowest order matches with the NGK transformation in the limit a→ 1

γ =
1

m

(
P−1
a −

iH

2m
(P−4

a + 2P−2
a ) +O

((
H

m

)2
))

with a modified differential operator

Pa =

√
1−

~∇2

a2m2
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Application to FLRW

The phase of α can again be chosen as arg(α) = mt

α =

√
m

2
eimtP1/2

a

The full transformation is

ψ =

√
m

2
eimtP1/2

a

(
φ+

i

m

(
P−1
a −

iH

2m
(P−4

a + 2P−2
a )

)
uµ∂µφ

)
The equation of motion for the transformed field then becomes

i

(
ψ̇ +

3

2
Hψ

)
= m(Pa − 1)ψ ≈ −

~∇2

2a2m
ψ

which to lowest order matches with the c→∞ limit.
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Effective Lagrangian for φ4 in FLRW spacetime

Adding a four-point interaction changes the Lagrangian to

L = −1

2
gµν(∂µφ)(∂νφ)− 1

2
m2φ2 − λ

4!
φ4

and adds a term to the equation of motion

i

(
ψ̇ +

3

2
Hψ

)
= m(Pa − 1)ψ +

λ

3!
αγ(α∗γ∗ψ + αγψ∗)3

which we expand in the same frequency modes as for the NGK transformation.
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Effective Lagrangian for φ4 in FLRW spacetime

The difference here is that we also consider H/m small in addition to ~p2

m2 , λ

and ψ̇ν
mψν

.
The resulting effective Lagrangian is

Leff =
i

2
(ψ̇sψ

∗
s − ψsψ̇∗s )− 1

2a2m
(~∇ψs)(~∇ψ∗s )− λ

16m2
|ψs|4

+
1

8a4m3
(~∇2ψs)(~∇2ψ∗s )− λ

32a2m4
|ψs|2(ψ∗s ~∇2ψs + ψs~∇2ψ∗s )

+
17λ2

9 · 28m5
|ψs|6 − i

3λH

32m3
|ψs|4.

which contains additional factors of a scaling each spatial derivative and a new
term proportional to the Hubble rate H.
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Complex scalar fields

A free complex scalar on a general background metric has the Lagrangian

L = −gµν(∂µΦ∗)(∂νΦ)−m2|Φ|2

If we transform the complex scalar according to

Ψ1 = α(Φ + iγuµ∇µΦ) =
1√
2

(ψ1 + iψ2),

Ψ2 = α(Φ∗ + iγuµ∇µΦ∗) =
1√
2

(ψ1 − iψ2)

the Lagrangian becomes

L =
2∑

n=1

{ i
2

((uµ∂µΨn)Ψ∗n −Ψn(uµ∂µΨ∗n))

+ Ψ∗n (uµ∂µ arg(α)−BRe(γ)) Ψn

}
which contains just two identical independent non-relativistic fields representing
particles and antiparticles.
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II. Features of non-relativistic theories
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Symmetries of non-relativistic quantum field theories

Consider Gross-Pitaevskii action

S =

∫
dtdd−1x

{
ϕ∗(t, ~x)

[
i∂t +

~∇2

2m
− V (t, ~x)

]
ϕ(t, ~x)− λ

2
ϕ∗2(t, ~x)ϕ2(t, ~x)

}

Galilei transformations as non-relativistic limit of Poincare transformations

(t, xj)→ (t+ a,Rj kx
k + vjt+ bj)

Composition law

(R2, a2, ~v2,~b2) ◦ (R1, a1, ~v1,~b1) = (R2R1, a2 + a1, ~v2 +R2~v1,~b2 +R2
~b1 +~v2a1)
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Rotations

Rotations are realized as in the relativistic case with hermitian generators
Jj = 1

2
εjklMkl. When acting on a scalar field we have Mkl =Mkl where

Mkl = −i(xk∂l − xl∂k).

The action on a scalar field is simply

ϕ(t, ~x)→ ϕ′(t, ~x) = ϕ(t, R−1~x).

For non-relativistic spinor or tensor fields, this is supplemented by the
appropriate generator acting on the “internal” representation of the field
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Translations in space and time

Translations in space and time are also implemented as in the relativistic case.
They are generated by

P0 = −H = −i ∂
∂t
, Pj = −i ∂

∂xj
.

The action of a finite group element on the scalar field is

ϕ(t, ~x)→ ϕ′(t, ~x) = ϕ(t− a, ~x−~b).

For an infinitesimal transformation this becomes

ϕ(t, ~x)→ ϕ′(t, ~x) =
(

1− idaP0 − idbjPj
)
ϕ(t, ~x).

The last equation is for an infinitesimal transformation. Eigenfunctions are
plane waves, e−iωt+i~p~x, as usual.
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Galilei boosts

Galilei boosts are realized in a somewhat non-trivial way

ϕ(t, ~x)→ ϕ′(t, ~x) = eim~v~x−i
m~v2t

2 ϕ(t, ~x− ~vt)

Infinitesimal transformation

ϕ(t, ~x)→ ϕ′(t, ~x) =
(

1− idvjKj

)
ϕ(t, ~x),

where the boost generator is

Kj = −mxj − it
∂

∂xj
.

In particular, we see that this depends through the first term on the particle
mass m.
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Lie algebra

Commutation relations contain particle mass m as central charge

[Pj , Pk] = [P0, Pk] = [Kj ,Kk] = 0,

[Jj , Jk] = iεjklJl, [Jj , P0] = 0

[Jj , Pk] = iεjklPl, [Jj ,Kk] = iεjklKl,

[Kj , P0] = −iPj , [Kj , Pk] = −imδjk.

Galilei group realized as projective representation.
Superselection rule: linear superpositions of states with different mass m are
not allowed.
Alternatively introduce mass operator M as element of the Lie algebra

[Kj , Pk] = −iMδjk,

[M,P0] = [M,Pj ] = [M,Jj ] = [M,Kj ] = 0.

Mass operator is in the center of the algebra.
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Galilei covariant derivative

Consider transformation of time derivative term

ϕ∗(t, ~x) [i∂t]ϕ(t, ~x)→ ϕ∗(t, ~x− ~vt)
[
i∂t +

m~v2

2
− i~v ~∇

]
ϕ(t, ~x− ~vt).

Consider also the spatial derivative term

ϕ∗(t, ~x)

[
~∇2

2m

]
ϕ(t, ~x)→ ϕ∗(t, ~x− ~vt)

[
~∇2

2m
− m~v2

2
+ i~v ~∇

]
ϕ(t, ~x− ~vt).

Neither the time derivative term nor the spatial derivative terms are Galilei
covariant by themselves. However, their combination is. The combination

D = i∂t +
~∇2

2m
,

is acting as a covariant derivative with respect to Galilei boost transformations

Dϕ(t, ~x)→ Deim~v~x−i
m~v2t

2 ϕ(t, ~x− ~vt) = eim~v~x−i
m~v2t

2 Dϕ(t, ~x− ~vt).
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Global U(1) transformations

The action has another symmetry, namely under global U(1) transformations,

ϕ(t, ~x)→ eiαϕ(t, ~x), ϕ∗(t, ~x)→ e−iαϕ∗(t, ~x).

Consequence is the conservation law for particle number

∂tn+ ~∇~n = 0.

Here n = ϕ∗ϕ is the particle number density and

~n = − i

m

(
ϕ∗~∇ϕ− ϕ~∇ϕ∗

)
,

is the corresponding current.
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Time-dependent U(1) transformations

Consider time dependent U(1) transformations,

ϕ(t, ~x)→ eiα(t)ϕ(t, ~x), ϕ∗(t, ~x)→ e−iα(t)ϕ∗(t, ~x).

Time derivative term transforms as

[i∂t]ϕ→ [i∂t] e
iα(t)ϕ = eiα(t) [−∂tα(t) + i∂t]ϕ.

Can be compensated by a change in the external potential,

V (t, ~x)→ V (t, ~x)− ∂tα(t).

The extended combination

D = i∂t +
~∇2

2m
− V (t, ~x),

is a covariant derivative for both Galilei boost and time-dependent U(1)
transformations.
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Scaling transformations

Theories without interaction or at renormalization group fixed points have more
symmetries. Non-relativistic scaling

(t, ~x)→
(
λ2t, λ~x

)
.

Dilation transformation acting on the field,

ϕ(t, ~x)→ ϕ′(t, ~x) = λ(1−d)/2ϕ(λ−2t, λ−1~x).

For an infinitesimal transformation λ = 1 + c this can be written as

ϕ(t, ~x)→ ϕ′(t, ~x) = (1− icD)ϕ(t, ~x),

with the dilatation operator acting acting on the scalar fields given by

D = −i
(
xj

∂

∂xj
+ 2t

∂

∂t

)
− i d− 1

2
.
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Time-dependent scaling or “Schrödinger expansion”

Another interesting symmetry of the free Schrödinger equation with respect to
the time-dependent scaling

(t, ~x)→ (t′, ~x′) =

(
t

1 + ft
,

~x

1 + ft

)
.

As an infinitesimal transformation this reads

(t, ~x)→ (t′, ~x′) = (t− dft2, ~x− dft~x).

Infinitesimal transformation of the fields

ϕ(t, ~x)→ ϕ′(t, ~x) = (1− idfC)ϕ(t, ~x),

with the generator for a special conformal transformation

C = −i
(
t2
∂

∂t
+ txj

∂

∂xj

)
− itd− 1

2
− 1

2
m~x2.
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Full Schrödinger algebra

There are 12 generators in total (not counting the central charge)

3 rotations

3 Galilei boosts

3 translations in space

1 translation in time

1 dilatation

1 special conformal transformation

Dilations and Special conformal symmetry transformations are often broken by
interaction terms.
Additional commutation relations

[D, Jj ] = 0, [D,Pj ] = iPj , [D,P0] = 2iP0,

[D,Kj ] = −iKj , [D,M ] = 0,

[C, Jj ] = 0, [C,Kj ] = 0, [C,Pj ] = iKj ,

[C,P0] = iD, [C,D] = 2iC.

43 / 51



Effective potential

Write the action as

S =

∫
dtd3x

{
ϕ∗
(
i∂t +

~∇2

2m

)
ϕ− V (ϕ∗ϕ)

}
,

with microscopic potential as a function of ρ = ϕ∗ϕ,

V (ρ) = V0ρ+
λ

2
ρ2 = −µρ+

λ

2
ρ2.

At non-vanishing density one has V0 = −µ, where µ is the chemical potential.
For µ > 0 the minimum of the effective potential is at ρ0 > 0.
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Bose-Einstein condensate

If the solution ϕ(x) = φ0 is homogeneous (constant in space and time), it must
correspond to a minimum of the effective potential,

V ′(ρ0) = −µ+ λρ0 = 0,

or

φ0 =
√
ρ0 =

√
µ

λ
.

Breaks the global U(1) symmetry spontaneously: Bose-Einstein condensation.
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Bogoliulov excitations

Study small perturbations around the homogeneous field value φ0,

ϕ(x) = φ0 +
1√
2

[φ1(x) + i φ2(x)] ,

with real fields φ1(x) and φ2(x). The quadratic part of the action reads

S2 =

∫
dt d3x

{
−1

2
(φ1, φ2)

(
− ~∇2

2m
+ 2λφ2

0 ∂t

−∂t − ~∇2

2m

)(
φ1

φ2

)}
.

In momentum space, the matrix between the fields becomes

G−1(ω, ~p) =

(
~p2

2m
+ 2λφ2

0 −iω
iω ~p2

2m

)
.

Dispersion relation for quasi-particle excitations

ω =

√(
~p2

2m
+ 2λφ2

0

)
~p2

2m
.

This is known as Bogoliubov dispersion relation.

46 / 51



Phonons and particles
For small momenta, such that ~p2 � λφ2

0m
2, one finds

ω ≈
√
λφ2

0

m
|~p|.

In contrast, for ~p2 � λφ2
0m

2 one recovers the usual dispersion relation for
non-relativistic particles

ω ≈ ~p2

2m
.

The low-momentum region describes phonons (quasi-particles of sound
excitations), while the large-momentum region describes normal particles.
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2 mλ ϕ0
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2
λ
ϕ
02
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Landau’s criterion for superfluidity

Excitations leading to friction are created for small temperatures only when

ε(~p) + ~p · ~v < 0.

Otherwise there is no viscosity and the flow is superfluid. This happens for
motion below the critical velocity

vc = min
~p

ε(~p)

|~p| ,

For the Bogoliubov dispersion relation the critical velocity equals the velocity of
sound

vc = cs =

√
λφ2

0

m
.

For larger relative velocities, superfluidity is lost.
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Additional material
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Emergent global symmetries

real scalar: U(1) → Q =
∫
d3x
√
−g|ψ|2

broken by interaction, restored by approximation method
→ conservation of particle number

complex scalar: U(2), broken by interaction down to U(1) with
Q =

∫
d3x
√
−g(|Ψ1|2 − |Ψ2|2)

→ conservation of charge
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Interpretation as Bogoliubov transformation

associate non-relativistic fields with a new set of annihilation and creation
operators
ψ =

∫
d3p bpe

−ipx, ψ∗ =
∫
d3p b†pe

ipx

can express these in terms of the relativistic operators ap, a†p

Bogoliubov transformation: bp = upap + v∗pa
†
−p, b†p = u∗pa

†
p + vpa−p,

|up|2 − |vp|2 = 1

works for general background metric

flat spacetime: up = eimt, vp = 0 → same vacuum
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