Motivation	Assumptions o	Spacetimes o	Principle	Escape cone	Trapping 0000	Future

Neutrino trapping in rotating and non-rotating compact objects

Jaroslav Vrba^{1a}

¹ Research Centre of Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava ^ajaroslav.vrba@physics.slu.cz

30.9.2021

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation	Assumptions o	Spacetimes o	Principle 0000	Escape cone	Trapping 0000	Future oo
Overvi	ew					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 2 Assumptions
- Spacetimes we deal with
- Principle of trapping neutrinos
- 5 Escape cone
- 6 Trapping

Motivation	Assumptions	Spacetimes	Principle	Escape cone	Trapping	Future
●○	o	o	0000		0000	oo
Motivat	ion					

- Photons, gravitational waves or neutrinos move along null-geodesics (NG)
- Gravitational waves from ultracompact stars (Abramowicz, et al., 1997)

(ロ) (同) (三) (三) (三) (○) (○)

- Neutrino trapping in extremely compact objects (Stuchlík et al., 2008)
- Cooling of neutron stars (NS) is driven by neutrino emission

Motivation	Assumptions	Spacetimes	Principle	Escape cone	Trapping	Future
⊙●	o	o	0000		0000	oo

Presentation is based on:

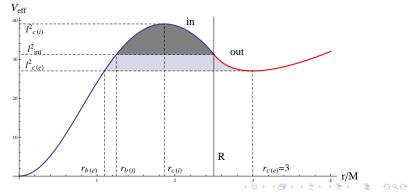
- *Trapping of null geodesics in slowly rotating spacetimes*; Vrba J., Urbanec M., Stuchlík Z., Miller J. C.; EPJC; 2020
- Neutrino trapping in extremely compact Tolman VII spacetimes; Stuchlík Z., Hladík J., Vrba J., Posada C.; EPJC; 2021
- Trapping of null geodesics in slowly rotating extremely compact Tolman VII spacetimes; Stuchlik Z., Vrba J.; EPJP; 2021

(ロ) (同) (三) (三) (三) (○) (○)

Motivation	Assumptions •	Spacetimes o	Principle 0000	Escape cone	Trapping	Future

- Given ρ(r) constant or quadratic (Schwarzschild or Tolman VII)
- Ultra compact object $R/M \approx 3$ (NS, Strnge or Quark Stars)
- Isotropic emission of neutrinos throughout the object
- Free path of neutrino in NS is much greater than object radius
- Rigid rotaion
- Hartle-Thorne approximation of rotating compact objects

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>


Motivation	Assumptions O	Spacetimes •	Principle 0000	Escape cone	Trapping	Future

- Schwarzschild spacetime
- Slowly rotating Schwarzchild first order Hartle-Thorne approximation
- Tolman VII spacetime
- Slowly rotating Tolman VII first order Hartle-Thorne approximation

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Motivation	Assumptions o	Spacetimes o	Principle ●000	Escape cone	Trapping 0000	Future oo
Effectiv	ve potenti	al				

- Effective potential gives insight into the behavior of spacetime, re-turning points
- Trapping areas appear if exists local maximum and minimum of effective potential (if unstable circular photon orbit is above the surface of the object)

Motivation	Assumptions O	Spacetimes o	Principle ○●○○	Escape cone	Trapping 0000	Future oo

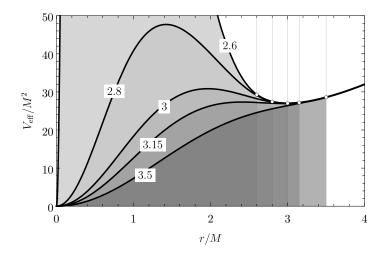
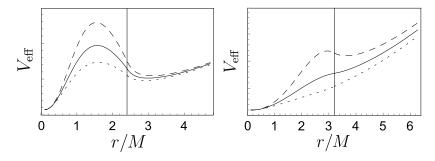



Figure: Effective potentials of non-rotating Tolman VII spacetimes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation	Assumptions o	Spacetimes o	Principle ○○●○	Escape cone	Trapping	Future

Figure: Effective potentials of null-geodesic for configuration with R/M = 2.4, j = 0.1 and $\theta = \pi/2$ on the left and effective potentials of null-geodesic for configuration with R/M = 3.2, j = 0.7 and $\theta = \pi/2$ on the right. Where solid line is non-rotating, dashed counter-rotating and dotted co-rotating part of effective potential.

◆ロト ◆課 ▶ ◆語 ▶ ◆語 ▶ ○語 ○ の久(で)

Motivation	Assumptions o	Spacetimes o	Principle ○○○●	Escape cone	Trapping 0000	Future oo
Photor	n orbit					

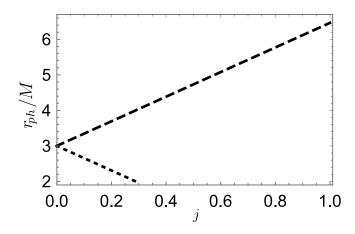
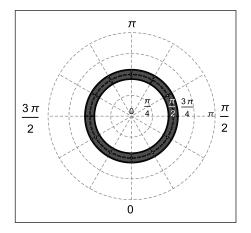



Figure: Dependence of unstable circular photon orbit for co-rotation (dotted) and counter-rotation (dashed) directions on rotation parameter *j*.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Motivation	Assumptions o	Spacetimes o	Principle 0000	Escape cone •oo	Trapping 0000	Future

Example of escape cone

Figure: The escape cone non-rotating configurations at the maximum of the effective potential for R/M = 2.8. A shaded part depicts trapped neutrinos.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation	Assumptions o	Spacetimes o	Principle 0000	Escape cone ○●○	Trapping 0000	Future

Cones for compactness 2.4

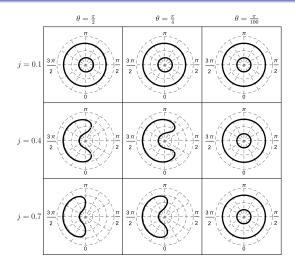


Figure: The escape cone produced at the maximum of the effective potential for R/M = 2.4.

э

Motivation	Assumptions o	Spacetimes o	Principle 0000	Escape cone ○○●	Trapping 0000	Future

Cones for compactness 3.2

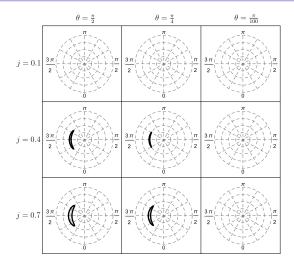
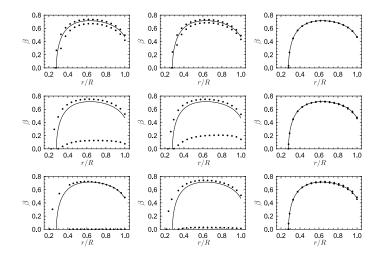


Figure: The escape cone produced at the maximum of the effective potential for R/M = 3.2.

ъ

Motivation	Assumptions	Spacetimes	Principle	Escape cone	Trapping	Future
00	o	o	0000		●000	oo
Trappin	Ig					


Trapping efficiency coefficient = trapped/produced

(ロ) (同) (三) (三) (三) (○) (○)

- Local trapping efficiency coefficient
- Global trapping efficiency coefficient

00 0 000 000 000 000 000 00	Motivation	Assumptions	Spacetimes	Principle	Escape cone	Trapping	Future
						0000	

Local trapping for compactness 2.4

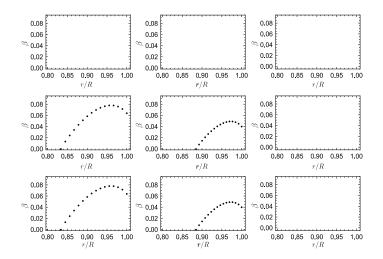


Figure: Local trapping efficiency coefficient β for R/M = 2.4. In first column $\theta = \pi/2$, in second $\pi/4$, and in third $\pi/1000$. In first line is j = 0.1 in second 0.4 and in third line j = 0.7.

SAC

00 0 0 0000 000 00●0 00	Motivation	Assumptions	Spacetimes	Principle	Escape cone	Trapping	Future
						0000	

Local trapping for compactness 3.2

Figure: Local trapping efficiency coefficient β for R/M = 3.2. In first column $\theta = \pi/2$, in second $\pi/4$, and in third $\pi/1000$. In first line is j = 0.1 in second 0.4 and in third line j = 0.7.

990

Motivation	Assumptions	Spacetimes o	Principle	Escape cone	Trapping 000●	Future

Global trapping efficiency coefficient

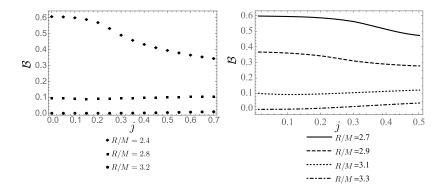


Figure: Global trapping efficiency coefficient B for Schwarzschild rotating NS (right panel) and Tolman VII rotating (left panel) NS.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Motivation 00	Assumptions o	Spacetimes o	Principle 0000	Escape cone	Trapping	Future ●○
Future						

- Realistic EOS Polytropic EOS
- More realistic spacetime Higher orders of Hartle-Thorne approximation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation	Assumptions o	Spacetimes o	Principle 0000	Escape cone	Trapping 0000	Future o●
Thank	you					

THANK YOU for your attention!

