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Quasi-Dirac neutrino is interesting in neutrino oscillation because

e Oscillation between active and light sterile neutrino can be explained in this
framework
e Neutrino osc. exps can predict mass parameter measured in Ov(35 exp.



Dirac—Majorana mass term

The neutrino Dirac-Majorana mass term in Lagrangian is given as
1 o c
Lo=5(m v )M " ) +ne,
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e The mass matrix M is a 6 X 6 symmetric matrix

M. M
M = -L[- o )
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The diagonalizing matrix of the mass matrix M according to
UTMU =M,

with 2/ is 6 x 6 unitary matrix and M diagonal mass matrix.



Why mass of neutrino is so tiny?

Understanding with 2 x 2 matrix (for one generation)

mg mp
M= :
mp mgr

1
myo = §[mL + mr + \/(mL — mg)? + 4m?]

1. Dirac Neutrino case: my = mg =0, mi» = +mp
2. Majorana neutrino case:
e Seesaw regime : m; =0, mg > mp, my = mg, my = —mﬁ/mR
e Quasi Dirac neutrino: Small deviation from Dirac case, m; ~ mgr << mp,
my o = :tmD(l S5 e) with € = (mL + mR)/ZmD

For three generation, the diagonal mass matrix in case of diagonlized mass matrix is

M_(m,'+6,' 0 )
0 —mj + €



Paramatrization of mixing matrix U/

A general parametrization of the 6 x 6 unitary diagonalization matrix can be introduced
as a product of three unitary matrices [Phys.Rev.D 85 (2012) 013008], / = A- X - S.

U=Xx A8, (1)

where A and S mix exclusively active or sterile neutrino flavors, v, or vg, respectively,

(Ut o (1 0 _ 1 Xt .
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X has mixing angles and phases beyond Dirac mixing. Dirac case is reprduced with
X = 0. This can be done by inserting a constant unitary matrix 7 into the definition of
the QD unitary diagonalization matrix U

U=X-T-A-S, (3)
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where



Theoretical Framework

e Present study focuses on the effect of mass splitting between left and right handed
neutrino

e Mixing matrix is taken same as Dirac case.

e The problem is simplified with one mass splitting instead of three
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The JUNO detector

e JUNO is a 20 kiloton liquid scintillator detector, multi-purpose.

e One of the main goals is to measure the neutrino mass ordering, detecting IBD
events due to 7. from reactor power plants

o The energy resolution of the detector should be as good as 3%+V/E to distinguish
the energy spectra for NO and 10

e The baseline is around 53 km,

Cores YJ-C1 | YJ-C2 | YJ-C3 | YJC4 | YJC5 | YJC4
Power (GWy,) | 2.9 2.9 2.9 2.9 2.9 2.9
Baseline (km) | 52.75 52.84 52.42 52.51 5212 | 53.21

Cores TS-C1 | TS-C2 | TS-C3 | TS-V4 | DYB | HZ
Power (GWy) | 4.6 46 4.6 4.6 174 | 174
Baseline (km) | 52.76 | 52.63 | 52.32 52.2 215 265

Table 1: The thermal powers and distances of the nuclear cores that we include in the analysis.



Survival probabilities of reactor 7,

53 km, NO
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Expected Constraints on Majorana contribution ¢

Number of IBD events from all the reactors (listed in JUNO yellow book)

dNg N, dd>k(E) dE,
dEe Z 4rl2 S, fk < E. > > f dErue 7160(E) Pee(E, Lra), - (6)

The total number of IBD events to appear in the i-th bin with reconstructed prompt
energy Emin to Emax is given by

El o

max dN,

Nirec :/ dEreC/ dEtrueid P(E’ec; Etrue) ' (7)
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® P(Eec; Etrue) is calculated using Gaussian distribution of Erec with o = 3%+/Erec.

e Efficiency of the detector is taken as 73% (Neutrino physics at JUNO,
arXiv:1507.05613)

e Energy spectra of reactor antineutrino from isotopes ***U, #°U and ?*!Pu are taken
from Phys.Rev.C 84, by P. Huber. That from 238U is taken from phys. Rev. Cs3, Mueller et.al.

o Cross-section is taken from A. Strumia and F. Vissani, Phys. Lett. B 564 (2003) 42-54, [astro-ph/0302055]



IBD Spectra at JUNO
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e The change for 10 is larger than that for NO
e Change is in normalization of the spectra, both for 10 and NO

e The normalization error of flux is important in analyzing data for the QD signal
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Constraint in the plane of lightest neutrino mass and ¢
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e Uncorrelated error in reactor flux o, = 0.8%

e Uncertainty in detection o4 = 1%

e Uncertainty in normalization of reactor antineutrino flux is kept 100%. If this error
changed to ~ 0, then x? values get increased by 10%
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Concluding remarks

e Quasi-Dirac neutrino is interesting since the mixing between active and light sterile
neutrino can be accommodated into the framework

e The neutrino oscillation can give a prediction of neutrino mass parameter measured
in the Ov 33 decay. For our constrained case ¢; = ¢ and X = 0, it reduces to the
expression

3
mgg = Z Use| = e ‘C122C123 + e chysh, + €% sl
i=1
e The 20 C.L. limit is € < 0.2 meV with Miightest < 3 meV and NO. For 10, this limit
is one order stringent.
o At Mightest > 3 (20) meV with NO (10), limits on € and miigntest are anticorrelated
e Analysis with adding new mixing angles would be interesting

e Certainly, the high baseline would be helpful with matter effects taken into account

Thank you!
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