

Astroneutrino Theory Workshop 2021

Prague, Czech Republic

Majorana neutrino oscillations in a magnetic field and CP violation

Artem Popov, Moscow State University

Based on:

[1] A. Popov, A. Studenikin, "Manifestations of nonzero Majorana CP-violating phases in oscillations of supernova neutrinos", Phys. Rev. D 103 (2021) 11, 115027;
[2] A. Popov, A. Studenikin, "Neutrino eigenstates and flavour, spin and spin-flavour oscillations in a constant magnetic field", Eur. Phys. J. C 79 (2019) 2, 144

Outline:

- Dirac and Majorana neutrinos
- CP-violation in neutrino oscillations
- Oscillations of Majorana neutrino in a magnetic field
- CP-violation in Majorana neutrino oscillations and implications in astrophysics

Majorana theory of fermions

Dirac field: left- and right-handed components are *independent*

$$\Psi_D = \Psi_L + \Psi_R$$

Majorana field: left- and right-handed components are *not independent*

$$\Psi_R = \Psi_L^c$$
$$\Psi_M = \Psi_L + \Psi_I^c$$

Thus, in Majorana case Ψ_L describes particles and Ψ_R describes antiparticles.

For a Majorana field the neutrality condition is satisfied:

$$\Psi_M^c = \Psi_M$$

Within SM neutrinos are the only particles that can potentially be Majorana fermions

Majorana neutrino mixing

Majorana neutrinos mixing is described by the following three relations:

In contrast, in Dirac case the mixing matrix for right-handed neutrinos can be chosen arbitrarily.

CP-violation in neutrino oscillations

For a review of leptonic CP-violation see G.C. Branco, R.Gonzalez Felipe, F.R. Joaquim, "Leptonic CP Violation", Rev.Mod.Phys. 84 (2012) 515-565

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$c_{ik} = \cos \theta_{ik}$$
$$s_{ik} = \sin \theta_{ik}$$

•
$$\delta$$
 is the Dirac CP-violating phase
The Dirac CP-violation phase can be measured in neutrino oscillations:
 $\Delta P_{\alpha\beta} = P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) = 4 \sum_{i>j} \operatorname{Im}(U_{\beta i}^{*}U_{\alpha i}U_{\beta j}U_{\alpha j}^{*}) \sin\left(\frac{\Delta m_{ij}^{2}L}{2E}\right)$
Depends on the Dirac CP-violating phase δ

• $lpha_1, lpha_2$ are the Majorana CP-violating phases

The experiments on neutrinoless double beta decay are potentially sensitive to the magnitude of $lpha_1-lpha_2$

Recent results on the Dirac CP-violating phase *K. Abe et al.* [T2K], Nature 580 (2020) no. 7803, 339-344

Neutrino oscillations in astrophysics

- Magnetic fields 10^{12} Gauss and more
- Baryon number density $10^{30} \mathrm{cm}^{-3}$ and higher
- Neutrino energies ~10 MeV (for supernova neutrinos)
- Possibly, supernova neutrinos will be detected by the future neutrino experiments, such as JUNO and Hyper-Kamiokande

For a review on topic of supernova neutrinos see A.Mirizzi, I.Tamborra, H.T.Janka, N.Saviano, K.Scholberg, R.Bollig, L.Hudepohl and S.Chakraborty, Riv. Nuovo Cim. 39 (2016) no.1-2, 1

Majorana neutrino interaction with a magnetic field

$$\mathcal{L}_{mag} = -\sum_{i,k} \mu_{ik} \left[\overline{(\nu_i^L)^c} \mathbf{\Sigma} \mathbf{B} \nu_k^L + \overline{\nu_i^L} \mathbf{\Sigma} \mathbf{B} (\nu_k^L)^c \right]$$

Magnetic field can induce neutrino-antineutrino oscillations ~
u
ightarrow ~
u

Magnetic moments matrix for Majorana neutrinos can be parameterized as follows:

$$\mu_{ij} = \begin{pmatrix} 0 & i|\mu_{12}| & i|\mu_{13}| \\ -i|\mu_{12}| & 0 & i|\mu_{23}| \\ -i|\mu_{13}| & -i|\mu_{23}| & 0 \end{pmatrix}$$

$$\mu_{\nu}^{exp} < 2.8 \times 10^{-11} \mu_B$$

See C.Giunti, A.Studenikin, "Neutrino electromagnetic interactions: a window to new physics", Rev.Mod.Phys. 87 (2015) 531 for a review

Majorana neutrino interaction with matter

$$\mathcal{L}_{mat} = -\sum_{\alpha} V_{\alpha}^{(f)} \overline{\nu_{\alpha}} \gamma_0 (1 + \gamma_5) \nu_{\alpha}$$
$$V^{(f)} = \operatorname{diag} \left(\frac{G_F n_e}{\sqrt{2}} - \frac{G_F n_n}{2\sqrt{2}}, -\frac{G_F n_n}{2\sqrt{2}}, -\frac{G_F n_n}{2\sqrt{2}} \right) \text{ is the Wolfenstein potential}$$

 n_e and n_n are electron and neutron number densities respectively

For Majorana fermions the following relation holds: $ar{\Psi}\gamma_\mu\Psi=0$

$$\mathcal{L}_{mat}^{M} = -\sum_{\alpha} V_{\alpha}^{(f)} \left[\overline{\nu_{\alpha}^{L}} \gamma_{0} \nu_{\alpha}^{L} - \overline{(\nu_{\alpha}^{L})^{c}} \gamma_{0} (\nu_{\alpha}^{L})^{c} \right]$$

Majorana neutrino oscillations in a magnetic field

Neutrino propagation in a magnetic field and media is described by the following equation:

$$(i\gamma^{\mu}\partial_{\mu} - m_i - V_{ii}^{(m)}\gamma^0\gamma_5)\nu_i(x) - \sum_{k\neq i} \left(\mu_{ik}\boldsymbol{\Sigma}\boldsymbol{B} + V_{ik}^{(m)}\gamma^0\gamma_5\right)\nu_k(x) = 0$$

 $V^{(m)} = U^{\dagger} V^{(f)} U$

The equation can be represented in a Hamiltonian form:

$$i\frac{\partial}{\partial t}\nu(x) = \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}\nu(x) = H\nu(x) \qquad \nu = (\nu_e, \nu_\mu, \nu_\tau)^T$$

 $H_{ik} = \delta_{ik}\gamma_0\gamma \boldsymbol{p} + m_i\delta_{ik}\gamma_0 + \mu_{ik}\gamma_0\boldsymbol{\Sigma}\boldsymbol{B} + V_{ik}^{(m)}\gamma_5$

Neutrino oscillations probabilities

$$\begin{split} P(\nu_{\alpha}^{s} \rightarrow \nu_{\beta}^{s'}) &= \left| \left\langle \nu_{\beta}^{s'}(0) | \nu_{\alpha}^{s}(x) \right\rangle \right|^{2} = \left| \sum_{i,k} \left(U_{\beta k}^{s'} \right)^{*} U_{\alpha i}^{s} \left\langle \nu_{k}^{s'}(0) | \nu_{i}^{s}(x) \right\rangle \right|^{2} \\ \alpha, \beta &= e, \mu, \tau \\ \text{Neutrino flavours} \\ \end{split} \begin{array}{l} s, s' &= L, R \\ \text{Neutrino helicities} \\ \text{(Note that in the Majorana case L and R} \\ \text{stand for neutrinos and antineutrinos respectively)} \end{split}$$

Note that for the Majorana neutrinos case

$$U^L = U, \, U^R = U^*$$

Neutrino oscillations probabilities

We derive the following expression for the probabilities of neutrino oscillations:

$$P(\nu_{\alpha}^{s} \to \nu_{\beta}^{s'}) = \delta_{\alpha\beta}\delta_{ss'} - 4\sum_{n>m} \operatorname{Re}(A_{\alpha\beta nm}^{ss'})\sin^{2}\left(\frac{E_{n} - E_{m}}{2}\right)x + 2\sum_{n>m}\operatorname{Im}(A_{\alpha\beta nm}^{ss'})\sin\left(E_{n} - E_{m}\right)x$$

The expression is valid for the ultrarelativistic case (E >> m)

$$\begin{split} A_{\alpha\beta nm}^{ss'} &= \sum_{i,j,k,l} \left(U_{\beta k}^{s'} \right)^* U_{\alpha i}^s U_{\beta l}^{s'} \left(U_{\alpha j}^s \right)^* \left(C_{nki}^{ss'} \right)^* C_{ml}^{ss'} \\ H &= \sum_n E_n \left| n \right\rangle \left\langle n \right|, H \left| n \right\rangle = E_n \left| n \right\rangle \\ C_{nki}^{ss'} &= \left\langle \psi_k^{s'}(0) \right| P_n \left| \psi_i^s(0) \right\rangle \\ P_n &= \left| n \right\rangle \left\langle n \right| \qquad \text{Initial neutrino states} \end{split}$$

T-violating term

(See M.Jacobson, T.Ohlsson, "Extrinsic CPT Violation in Neutrino Oscillations in Matter", Phys. Rev. D 69 (2004), 013003 for a review of extrinsic CPT-violating effects in neutrino oscillation)

Oscillations amplitudes:

 $P(\nu_{\alpha}^{s} \to \nu_{\beta}^{s'})_{max} = \left(\sum_{n} |\mathcal{I}_{n\alpha\beta}^{ss'}|\right)^{2},$

 $\mathcal{I}_{n\alpha\beta}^{ss'} = \sum (U_{\beta k}^{s'})^* U_{\alpha i}^s C_{nki}^{ss'}.$

Case of absense of CP-violating phases

 $|\mu_{12}| = |\mu_{13}| = |\mu_{23}| = 10^{-12} \mu_B$ $n_n = 10^{31} \text{ cm}^{-3}$ $B = 10^{12} \text{ G}$ E = 10 MeV $Y_e = n_e/n_B, \, n_B = n_n + n_p$ **Electron fraction**

The amplitudes of neutrino-antineutrino oscillations as functions of the electron fraction Y_e for the case of CP conservation.

See E. Akhmedov, "Resonant amplification of neutrino spin rotation in matter and the solar-neutrino problem" Phys. Lett. B 213, 64 (1988)

Nonzero Dirac CP-violating phase

Left: the amplitudes of neutrino-antineutrino oscillations as functions of the electron fraction Y_e for the case of $\delta = \pi/2$, $\alpha_1 = 0$ and $\alpha_2 = 0$. Right: the amplitudes of neutrino-antineutrino oscillations as functions of the Dirac *CP*-violating phase δ for the case $Y_e = 0.35$, $\alpha_1 = 0$ and $\alpha_2 = 0$.

Nonzero Majorana CP-violating phases

The amplitudes of neutrino-antineutrino oscillations as functions of the electron fraction Y_e for the case of $\delta = 0$. Left: $\alpha_1 = \alpha_2 = \pi/2$. Right: $\alpha_1 = \alpha_2 = \pi$.

 $Y_e = 0.5$

Left: The amplitude of $\nu_e \to \overline{\nu}_{\mu}$ oscillations for the case $Y_e = 0.5$ as a function of the Majorana *CP*-violating phases α_1 and α_2 . Right: Same, but for the amplitude of $\nu_e \to \overline{\nu}_{\tau}$ oscillations.

Conclusion:

- We find new resonances in neutrino-antineutrino oscillations in a magnetic field in the case of nonzero Dirac and Majorana CP-violating phases
- The resonances appear at $Y_e = 0.35$ and $Y_e = 0.5$
- New resonances possibly can alter evolution of supernova neutrino fluxes and affect the flavour composition
- Thus, we conclude that astrophysical neutrino experiments potentially can be used to probe both the nature of neutrino mass and the presence of leptonic CP-violation