CNB essentials 3: Bounds on neutrino properties from cosmology

V

Sergio Pastor (IFIC Valencia)

V

EuCAPT AstroNu Theory Workshop Prague, 23 Sep 2021

V

Bounds on N_{eff}

Relativistic particles in the universe

At T<m_e, the radiation content of the Universe is

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} + \rho_{x} = \rho_{\gamma} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right]$$

effective number of relativistic neutrino species
(effective number of neutrinos)
N_{eff} is a way to measure the ratio
$$\frac{\rho_{\nu} + \rho_{x}}{\rho_{\gamma}}$$

Number of light neutrino types (LEP data) $N_{
u}=2.984\pm0.008$

BBN: Predictions vs Observations

$$\eta_{10} = \frac{n_B/n_\gamma}{10^{-10}} \simeq 274 \,\Omega_B h^2$$

 $5.8 \le \eta_{10} \le 6.5$ (95% CL)

Fields, Molaro & Sarkar, PDG 2020

Effect of neutrinos on Primordial Nucleosynthesis

1. N_{eff} fixes the **expansion rate** during BBN

2. Direct effect of **electron** neutrinos and antineutrinos on the **n-p reactions**

 $\nu_e + n \leftrightarrow p + e^- \quad e^+ + n \leftrightarrow p + \bar{\nu}_e$

BBN: allowed ranges for N_{eff}

The minimal ΛCDM model fits very well Planck data

Parameter		TT+lowE 68% limits		TE+lowE 68% limits	EE+lowE 68% limits
$egin{array}{c} \Omega_{ m b}h^2 \ldots \ldots \ \Omega_{ m c}h^2 \ldots \ldots \ldots \ \Omega_{ m c}h^2 \ldots \ldots \ldots \ldots \ \Omega_{ m c}h^2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ \Omega_{ m c}h^2 \ldots \ \Omega_{ m c}h^2 \ldots \ldots$	· · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 0.02212 \pm 0.02212 \pm 0.01206 \pm 0.01206 \pm 0.01206 \pm 0.000000000000000000000000000000000$	0.00022 .0021 0.00047 .0080 016 .0057	$\begin{array}{c} 0.02249 \pm 0.00025 \\ 0.1177 \pm 0.0020 \\ 1.04139 \pm 0.00049 \\ 0.0496 \pm 0.0085 \\ 3.018^{+0.020}_{-0.018} \\ 0.967 \pm 0.011 \end{array}$	$\begin{array}{c} 0.0240 \pm 0.0012 \\ 0.1158 \pm 0.0046 \\ 1.03999 \pm 0.00089 \\ 0.0527 \pm 0.0090 \\ 3.052 \pm 0.022 \\ 0.980 \pm 0.015 \end{array}$
$H_0 [{ m km}{ m s}^{-1}{ m Mp}$ $\Omega_{\Lambda} \ldots \ldots \ldots$ $\Omega_{ m m} \ldots \ldots \ldots$	∞ ^{−1}]	66.88 ± 0.9 0.679 ± 0.0 0.321 ± 0.0	02 013 013	68.44 ± 0.91 0.699 ± 0.012 0.301 ± 0.012	$\begin{array}{c} 69.9 \pm 2.7 \\ 0.711 \substack{+0.033 \\ -0.026 \\ 0.289 \substack{+0.026 \\ -0.033 \end{array}} \end{array}$
Parameter	TT,TE,I 68%	EE+lowE limits	TT,TE,	EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+E 68% limits
$h^{b}h^{2}$	$\begin{array}{r} 0.02236 \pm \\ 0.1202 \pm \\ 1.04090 \pm \\ 0.0544^{+0.0}_{-0.0} \\ 3.045 \pm 0 \end{array}$	0.00015 0.0014 0.00031 0070 0081 016	0.0223 0.1200 1.0409 0.0544 3.044 -	7 ± 0.00015 ± 0.0012 2 ± 0.00031 ± 0.0073 ± 0.014	$\begin{array}{c} 0.02242 \pm 0.00014 \\ 0.11933 \pm 0.00091 \\ 1.04101 \pm 0.00029 \\ 0.0561 \pm 0.0071 \\ 3.047 \pm 0.014 \end{array}$
$(10^{\circ} A_s) \dots \dots$	5.043 ± 0.000 0.9649 ± 0.000	0.0044	0.9649	± 0.0042	0.9665 ± 0.0038
р [кп з түрс] А	$0.6834 \pm 0.3166 \pm 0.000$	0.0084 0.0084	0.6847 0.3153	± 0.0073 ± 0.0073	0.6889 ± 0.0056 0.3111 ± 0.0056

CMB anisotropies + other data

$$N_{
m eff} \lesssim 17$$
 (2001) early CMB data $N_{
m eff} = 4.2^{+1.2}_{-1.7}$ (2005) WMAP+...

Planck: 1-parameter extensions of the Λ CDM model

CMB anisotropies + other data

Comparison: allowed ranges for N_{eff} and BBN

Planck Coll, A&A 641 (2020) A6

N_{eff} with non-standard neutrino-electron interactions

Non-standard neutrino-electron interactions

Non-standard interactions (NSI) between neutrinos and electrons can be parametrised as follows:

$$\mathcal{L}_{\text{NSIe}} = -2\sqrt{2}G_F \sum_{\alpha,\beta} \varepsilon^X_{\alpha\beta} \left(\overline{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta} \right) \left(\overline{e} \gamma_{\mu} P_X e \right)$$

with
$$X \in \{L, R\}$$

 $\alpha, \beta \in \{e, \mu, \tau\}$

Dimensionless coefficients $\varepsilon^X_{\alpha\beta}$ quantify the strength of the interactions with respect to the SM

$$\varepsilon_{\alpha\alpha}^{X}$$
 Non-universal NSI
 $\varepsilon_{\alpha\beta}^{X}(\text{with } \alpha \neq \beta)$ Flavour-changing ($\alpha \neq \beta$) NSI

N_{eff} with non-standard neutrino-electron interactions

N_{eff} with only one NSI parameter

 N_{eff} for non-universal NSI

PF de Salas et al, PLB 820 (2021) 136508

N_{eff} with only one NSI parameter

 N_{eff} for flavour-changing NSI

PF de Salas et al, PLB 820 (2021) 136508

N_{eff} varying 2 NSI parameters

Future determinations of Neff are expected to have an error of 0.02-0.03

> White shaded bands correspond to terrestrial bounds on NSI.

PF de Salas et al, PLB 820 (2021) 136508

N_{eff} varying 2 NSI parameters

Future determinations of Neff are expected to have an error of 0.02-0.03

> White shaded bands correspond to terrestrial bounds on NSI.

PF de Salas et al, PLB 820 (2021) 136508

Bounds on neutrino masses

Neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

Neutrinos as Dark Matter

• Neutrinos are natural DM candidates

$$\Omega_{\nu}h^{2} = \frac{\sum_{i} m_{i}}{93.2 \text{ eV}} \qquad \Omega_{\nu} < 1 \rightarrow \sum_{i} m_{i} \lesssim 46 \text{ eV}$$
$$\Omega_{\nu} < \Omega_{m} \simeq 0.3 \rightarrow \sum_{i} m_{i} \lesssim 15 \text{ eV}$$

- They stream freely until non-relativistic (collisionless phase mixing)
 Neutrinos are HOT Dark Matter (large thermal motion)
- First structures to be formed when Universe became matter –dominated are very large
- Ruled out by structure formation CDM

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

Cosmological bounds on neutrino mass(es)

A unique cosmological bound on m_v DOES NOT exist !

Different analyses have found upper bounds on neutrino masses, since they depend on

- The combination of cosmological data used
- The assumed cosmological model: number of parameters (problem of parameter degeneracies)
- The properties of relic neutrinos

Planck: 1-parameter extensions of the ΛCDM model

Bounds on Σm_v from Planck (+other cosmo data)

Cosmological upper limits on the sum of neutrino masses

Bounds on Σm_v from Planck (+other cosmo data)

Cosmological upper limits on the sum of neutrino masses

Probing the absolute neutrino mass scale

Searching for non-zero neutrino mass in laboratory experiments

• Tritium beta decay: measurements of endpoint energy

$$^{3}H \rightarrow {}^{3}He + e^{-} + \bar{\nu}_{e}$$

 m_{β} < 2.2 eV (95% CL) Mainz

Current experiment (KATRIN) $m(v_e) < 0.8 eV$ (90% CL)

• Neutrinoless double beta decay: if Majorana neutrinos

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-2}$$

experiments with ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe and other isotopes: $m_{\beta\beta}$ < 60-600 meV , depending on NME

Probing the absolute neutrino mass scale

Tritium
$$\beta$$
 decay $m_{\beta} = \left(\sum_{i} |U_{ei}|^2 m_i^2\right)^{1/2}$ 80 meV
 $[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2]^{1/2}$
Neutrinoless
double beta
decay $m_{\beta\beta} = \left|\sum_{i} U_{ei}^2 m_i\right| < 60{-}600 \text{ meV}$
 $|c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}|$

Tritium β decay, $0\nu 2\beta$ and Cosmology

Bounds on active-sterile oscillations (3+1 case)

Mixing of four neutrino states?

Additional neutrino (sterile) states introduced in order to explain some anomalies in experimental data

4 flavour neutrinos, 4 massive neutrinos

4x4 mixing matrix $\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_{1}1} & U_{s_{1}2} & U_{s_{1}3} & U_{s_{1}4} \end{pmatrix}$

We consider **3 (active) + 1 (sterile)**, a perturbation of the 3-neutrino case

Mixing of four neutrino states?

Additional neutrino (sterile) states introduced in order to explain some anomalies in experimental data

4 flavour neutrinos, 4 massive neutrinos

4x4 mixing matrix
$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_{1}1} & U_{s_{1}2} & U_{s_{1}3} & U_{s_{1}4} \end{pmatrix}$$

We consider **3 (active) + 1 (sterile)**, a perturbation of the 3-neutrino case

$$|U_{e4}|^2 = \sin^2 \theta_{14},$$

$$|U_{\mu4}|^2 = \cos^2 \theta_{14} \sin^2 \theta_{24},$$

$$|U_{\tau4}|^2 = \cos^2 \theta_{14} \cos^2 \theta_{24} \sin^2 \theta_{34},$$

$$|U_{s4}|^2 = \cos^2 \theta_{14} \cos^2 \theta_{24} \cos^2 \theta_{34}.$$

Results: final value of N_{eff} and sterile mixing parameters

Results: final value of N_{eff} and sterile mixing parameters

Results: final value of N_{eff} and sterile mixing parameters

Cosmological bounds on active-sterile mixing parameters

Use multi-angle results from FortEPiaNO to derive constraints on $|U_{\alpha 4}|^2$:

Bounds on active-sterile mixing parameters

Cosmological constraints are stronger than most other probes But much more model dependent (as all the cosmological constraints)!

S Hagstotz et al, arXiv:2003.02289

Bounds on active-sterile mixing parameters

Cosmological constraints are stronger than most other probes But much more model dependent (as all the cosmological constraints)!

Warning: tension between reactor experiments and CMB bounds!

Future sensitivities on neutrino physics from cosmology

Future sensitivities on N_{eff} and neutrino masses

CMB-S4 Science Book, 1610.02743

End