CNB essentials 3: Neutrinos and BBN; neutrino oscillations in the early Universe

Sergio Pastor (IFIC Valencia)

EuCAPT AstroNu Theory Workshop Prague, 21 Sep 2021

Outline

Neutrinos and Primordial Nucleosynthesis

Neutrino oscillations in the Early Universe

Neutrinos and Primordial Nucleosynthesis

Primordial abundances of light elements: **Big Bang** Nucleosynthesis (BBN)

380 000 Hears

HEALS

Particles form

comic inflation cuations

Big Bang

10³² seconds

1030 seconds

Ordinary matter particles are coupled to just and

dat mater paticles start building structures

Didinary matter particles decounte from light and the cosmic Microurave Badgoound 5 released

200 million years

Ordinary matter particles fall into the

Studues created by daly natter

BBN: last epoch sensitive to neutrino flavour Bound on N_{eff} (typically N_{eff}<4)

T billion years

Justers of galaxies and superlusters form

13.82 billion years

Galaxy evolution

10 billion years

Produced elements: D, ³He, ⁴He, ⁷Li and small abundances of others

Theoretical inputs:

- G_N , the Newton gravitational constant;
- η , the baryon to photon number density ratio;
- the nuclear rates.

• τ_n , the neutron lifetime;

$$\eta_{10} = \frac{n_B/n_\gamma}{10^{-10}} \simeq 274 \,\Omega_B h^2$$

Phase II: 0.1-0.01 MeV Formation of light nuclei starting from D

Photodesintegration

prevents earlier formation for temperatures closer to nuclear binding energies

Phase II: 0.1-0.01 MeV Formation of light nuclei starting from D

Photodesintegration prevents earlier formation for temperatures closer to nuclear binding energies

BBN: Measurement of Primordial abundances

Difficult task: search in astrophysical systems with chemical evolution as small as possible

Deuterium: destroyed in stars. Any observed abundance of D is a *lower* limit to the primordial abundance. Data from high-z, low metallicity QSO absorption line systems

Helium-3: produced and destroyed in stars (complicated evolution) Data from solar system and galaxies, but not used in BBN analysis

Helium-4: primordial abundance increased by H burning in stars. Data from low metallicity, extragalatic HII regions

Lithium-7: destroyed in stars, produced in cosmic ray reactions. Data from oldest, most metal-poor stars in the Galaxy

Inferred Primordial abundances

Difficult task: search in astrophysical systems with chemical evolution as small as possible

⁴He observed in extragalactic HII regions:

 $Y_{\rm P} = 0.245 \pm 0.003$

²H observed in quasar absorption systems (and ISM):

 $D/H/_{P} = (2.543 \pm 0.027) \times 10^{-5}$

⁷Li observed in atmospheres of dwarf halo stars:

 $Li/H/_{P} = (1.6 \pm 0.3) \times 10^{-10}$

(³He can be both created & destroyed in stars ... so primordial abundance *cannot* be reliably estimated)

S. Sarkar, Latest Advances in the Physics of BBN and Neutrino Decoupling 2021

BBN: Predictions vs Observations

Planck Coll, A&A 641 (2020) A6

Effect of neutrinos on BBN

1. N_{eff} fixes the **expansion rate** during BBN

2. Direct effect of **electron** neutrinos and antineutrinos on the **n-p reactions**

$$\nu_e + n \leftrightarrow p + e^- \quad e^+ + n \leftrightarrow p + \bar{\nu}_e$$

BBN: allowed ranges for N_{eff}

BBN: allowed ranges for N_{eff}

Planck Coll, A&A 641 (2020) A6

Neutrino oscillations in the Early Universe

Neutrino mixing and oscillations: 3 flavours

flavour neutrinos v_{α}

$$\nu_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau) \text{ massive neutrinos } v_{i}$$

 $U_{\alpha k}$ described by 3 mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ and one CP phase δ

Current knowledge of the 3 active ν mixing: [JHEP 02 (2021) update]

See also http://globalfit.astroparticles.es

Neutrino oscillations in the Early Universe

Neutrino oscillations are effective when medium effects get small enough

Flavour neutrino oscillations in the Early Universe

Standard case: all neutrino flavours equally populated oscillations are effective below a few MeV, but have no effect (except for mixing the small distortions δf_v) Cosmology is insensitive to neutrino flavour after decoupling!

Non-zero neutrino asymmetries: flavour oscillations lead to (approximate) global flavour equilibrium

the restrictive BBN bound on the $\nu_e \bar{\nu}_e$ asymmetry applies to all flavors, but fine-tuned initial asymmetries always allow for a large surviving neutrino excess radiation that may show up in precision cosmological data (value depends on θ_{13})

Active-sterile neutrino oscillations

What if additional, light *sterile* neutrino species are mixed with the flavour neutrinos?

♣ If oscillations are effective before decoupling: the additional species can be brought into equilibrium: N_{eff}=4

♣ If oscillations are effective <u>after decoupling</u>: N_{eff} =3 but the spectrum of active neutrinos is **distorted** (direct effect of v_e and anti- v_e on BBN)

N_{eff} & Active-sterile neutrino oscillations

N_{eff} & Active-sterile neutrino oscillations

Hannestad, Tamborra & Tram, JCAP 07 (2012) 025

Boltzmann evolution equations (matrix form)

$$(\partial_t - Hp \,\partial_p) \,\varrho_p(t) = -i \left[\begin{pmatrix} \frac{1}{2p} \mathbb{M}_{\mathrm{F}} - \frac{8\sqrt{2}G_{\mathrm{F}}p}{3m_{\mathrm{W}}^2} \mathbb{E} \\ \mathsf{vacuum osc. term} & \mathsf{matter potential term} \\ \mathsf{t} & \mathsf{continuity} \\ \mathsf{equation} \\ \dot{\rho} = -3H(\rho + P) \end{pmatrix} \xrightarrow{\mathsf{comoving coordinates:}} \begin{array}{l} a = 1/T \quad x \equiv m_e \, a \\ y \equiv p \, a \quad z \equiv T_\gamma \, a \quad w \equiv T_\nu \, a \end{array} \right] + \mathcal{I} \left[\varrho_p(t) \right] + \mathcal{I} \left[\varrho_p(t) \right]$$

S Gariazzo, PF de Salas & SP, JCAP 07 (2019) 014 [arXiv:1905.11290]

take into account matter effects in oscillations

Results: evolution of energy densities (comoving)

dashed: 3ν , solid: $|U_{e4}|^2 = 10^{-2}$, $|U_{\mu4}|^2 = |U_{\tau4}|^2 = 0$. $\Delta m_{41}^2 = 1.29 \text{ eV}^2$

Results: evolution of energy densities (comoving)

dashed: 3ν , solid: $|U_{e4}|^2 = 10^{-2}$, $|U_{\mu4}|^2 = |U_{\tau4}|^2 = 0$. $\Delta m_{41}^2 = 1.29 \text{ eV}^2$

End