The European Nuclear Experimental Educational Platform – ENEEP: Progress, Prospects and Remote Education Capabilities

Vladimir Radulović et al.
Jožef Stefan Institute, Ljubljana, Slovenia

ANIMMA2021, June 21-25, Prague, Czech Republic
Introduction

Contributing authors

Jožef Stefan Institute
Vladimir Radulović, Anže Jazbec, Luka Snoj

Slovak Technical University in Bratislava
Ján Haščík, Branislav Vrban, Štefan Čerba, Jakub Lüley, Filip Osusky

Czech Technical University in Prague
Lubomír Sklenka, Marcel Miglierini, Ondřej Novák

Technische Universitaet Wien
Helmuth Böck, Marcella Cagnazzo, Mario Villa

Budapest University of Technology and Technology and Economics
Szabolcs Czifrus, Attila Tormási

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847555
Introduction
The ENEEP project

- **2019**: EURATOM project call - Availability and use of research infrastructures for education, training and competence building

- Five EU research organizations apply with the idea of ENEEP:
 - Jožef Stefan Institute - Ljubljana
 - Slovak Technical University in Bratislava
 - Czech Technical University in Prague
 - Technische Universitaet Wien
 - Budapest University of Technology and Economics
Introduction

The ENEEP project

- **2019**: EURATOM project call - Availability and use of research infrastructures for education, training and competence building
- Five EU research organizations apply with the idea of ENEEP:
 - Jožef Stefan Institute - Ljubljana
 - Slovak Technical University in Bratislava
 - Czech Technical University in Prague
 - Technische Universitaet Wien
 - Budapest University of Technology and Economics
- **ENEEP**: European Nuclear Experimental Educational Platform
Introduction

Our past experience

Long-term experimental nuclear education:

- Four ENEEP partners involved in the ENEN Eugene Wigner course (2003-2008)
- Four ENEEP partners established EERRI initiative (2009-present) - Group Fellowship training programme
- Numerous dedicated courses for:
 - University students & young professionals (EU, USA, other)
 - NPP operators

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847555
Our advantages

- Close geographic location in Central Europe
- Good travel connections
- Shared visa policy (Schengen area)
- Four research reactors:
 - TRIGA reactor / JSI
 - Training reactor VR-1 / CTU
 - TRIGA reactor / TU Wien
 - Training reactor / BME
- Laboratories / STU
Introduction

Our facilities

ENEEP members

BME Budapest

CTU Prague

IJS Ljubljana

STU Bratislava

TU Wien

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847555.
Our mission is to fulfill the needs of European users in order to significantly enhance their experimental education and hands-on activities in nuclear curricula, particularly in the field of nuclear safety and radiation protection.
ENEEP Project structure

Workpackages

- **WP1**: Post-grant requirements
- **WP2**: Consortium coordination & management
- **WP3**: Capabilities, users and SWOT analysis of ENEEP
- **WP4**: Establishment of ENEEP
- **WP5**: Demonstration of ENEEP
- **WP6**: Dissemination and feedback

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847555
WP3: foundations for ENEEP

- **Capabilities** - databases on:
 - Facilities
 - Experiments
 - Instruments

- **Potential users** → establishing contact, promotion

- **SWOT analysis** → directions

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847555
WP4: ENEEP legal status, implementation, procedures

- Agreement on structure & legal status of ENEEP → Association, est. in Jan. 2022
- Applications to ENEEP → internal procedure
- Facility access requirements
- Procedures for group activities (based on WP3)
- Shortlist of novel activities
- Implementation workflow
- Facility operation schedule
Measurement of the diffusion length and the Fermi age of neutrons
Slovak University of Technology in Bratislava, Exercise STU-02

Main topic: Neutron-physical parameters of moderators

Keywords: Diffusion length, Fermi age, moderator, activation analyses, gamma and neutron measurement, neutron detectors, neutron radionuclide source

Purpose: The experiment demonstrates the fundamentals of neutron moderation and parasitic absorption in one of the most frequently used moderators. Diffusion length and Fermi age are parameters, which are used to categorize moderator materials in terms of their application. Within the measurement of neutron flux distribution in water or graphite the students apply fundamentals of the neutron slowing down and diffusion theory. At the end, students will be able to quantitatively characterize the main parameter of neutron moderators.

Level of exercise: ☒Basic ☒Advanced ☒Complex
Level of education: ☒BSc ☒MSc ☒PhD

What you will learn:
The students will learn how to measure neutron flux and, based on theoretical knowledge, and to determine the basic parameters of neutron moderators.

Important information:
• Minimal size of student group: 2
• Maximal size of student group: 4
• Overall duration of the experiment (in wall clock hours): 6
Void coefficient of reactivity
Jožef Stefan Institute, Exercise JSI-05

Main topic: Reactor Physics

Keywords: Void formation, coolant boiling, void coefficient of reactivity

Purpose: The void coefficient of reactivity is one of the most important coefficients of reactivity for safe reactor operation. The JSI TRIGA reactor is equipped with an electro-pneumatic system with which air can be injected into the reactor core to simulate void formation through boiling. The purpose of the experiment is the measurement of the magnitude of the void coefficient as a function of the radial location in the reactor core.

Level of exercise: ☒ Advanced
Level of education: ☒ MSc

What you will learn: Students will observe the change in reactivity caused by the presence of air bubbles in the reactor core and understand the magnitude and sign of the reactivity coefficient, depending on the location in the reactor core where air bubbles are injected.

Important information:
• Minimal size of student group: 4
• Maximal size of student group: 12
• Overall duration of the experiment (in wall clock hours): 3-4

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847555
Void coefficient of reactivity
Jožef Stefan Institute, Exercise JSI-05

Main topic: Reactor Physics

Keywords: Void formation, coolant boiling, void coefficient of reactivity

Purpose: The void coefficient of reactivity is one of the most important coefficients of reactivity for safe reactor operation. The JSI TRIGA reactor is equipped with an electro-pneumatic system with which air can be injected into the reactor core to simulate void formation through boiling. The purpose of the experiment is the measurement of the magnitude of the void coefficient as a function of the radial location in the reactor core.

Level of exercise: ☐ Basic ☒ Advanced ☒ Complex
Level of education: ☒ BSc ☒ MSc ☒ PhD

What you will learn:
Students will observe the change in reactivity caused by the presence of air bubbles in the reactor core and understand the magnitude and sign of the reactivity coefficient, depending on the location in the reactor core where air bubbles are injected.

Important information:
• Minimal size of student group: 4
• Maximal size of student group: 12
• Overall duration of the experiment (in wall clock hours): 3-4
Reactivity Values of Fuel Elements

TU Wien, Exercise TUW-06

Main topic: Reactor Physics

Keywords: fuel elements, reactivity worth, reactivity, reactor core

Purpose: This exercise examines the reactivity worth of fuel elements on different positions in the reactor core. A visual representation of reactivity worth may be obtained by plotting the horizontal distance of the fuel element to the core centre against the excess reactivity. The participants will learn the meaning of reactivity worth of fuel elements. They will become familiar with the effect of the horizontal distance of fuel elements on the reactivity of the core.

Level of exercise: ☒ Basic ☐ Advanced ☐ Complex
Level of education: ☒ BSc ☒ MSc ☐ PhD

What you will learn:
During this experiment the participants will gain an understanding of reactivity worth of fuel elements. They will become familiar with the effect of the horizontal distance of fuel elements on the reactivity of the core.

Important information:
• Minimal size of student group: 4
• Maximal size of student group: 8
• Overall duration of the experiment (in wall clock hours): 3
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847555

Main topic: Reactor Physics / Nuclear reactor operation

Keywords: reactor operation, safety of reactors

Purpose: This exercise is aimed at making the students familiar with the structure, operation, nuclear and technological measuring systems and control systems of nuclear reactors. In order to achieve these goals, students first study the characteristics of the control and safety systems and familiarize with the various nuclear and technological measurements. This is followed by the second part of the exercise when the students actually operate the reactor and study the behavior of the reactor and the control and safety systems in reality.

Level of exercise: ☒ Basic ☐ Advanced ☐ Complex

Level of education: ☒ BSc ☐ MSc ☐ PhD

What you will learn:
Students learn how a nuclear reactor is controlled and operated. They also learn how the safety systems intervene in case an error (either human or electronic) occurs. They also obtain information on the systems measuring the technological parameters and their role in the safe operation of the reactor.

Important information:
- Minimal size of student group: 2
- Maximal size of student group: 6
- Overall duration of the experiment (in wall clock hours): 4
WP4: Shortlist of novel activities

- Brainstorming for novel education activities
- Objective: ENEEP up-to-date with scientific development, methods, detectors, etc.

Shortlist: 17 new experiments for implementation

- Examples:
 - Flux redistribution
 - Experiments with D-D & D-T neutron generator
 - Neutron radiography in practice
 - Cherenkov reactor power meter (steady-state & pulse)
 - SiC neutron detectors
 - Fuel element gamma spectrometry
ENEEP Project structure
WP4: ENEEP establishment

Remote Reactor Physics Exercises for Slovak students at the VR-1 Training Reactor of CTU in Prague
April 26, 2021 • NewsEditor

Testing a new exercise at the JSI TRIGA reactor - Cherenkov radiation-based power meter
April 22, 2021 • NewsEditor

V4 Nuclear Training course – Simulation workshop
April 19, 2021 • NewsEditor

Remote experimental reactor physics course at University of Ljubljana, Faculty of Mathematics and Physics
March 5, 2021 • NewsEditor

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847555
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847555
ENEEP Project structure

WP5: Demonstration of ENEEP capabilities

- 2-week group activities at 2 ENEEP partner facilities (10 participants)
- 1-week group activities at 1 ENEEP partner facility (10 participants)
- Individual activities

Announcement to be made shortly
Remote capabilities

Motivation

- **Covid-19** ↔ **travel**
Remote capabilities

Motivation

- **Covid-19 ↔ travel**
- But not only:
 - Wider coverage, if travelling is not possible (Univ. budget!)
 - Flexibility
 - Experience - some aspects benefit from remote format

ENEEP remote capabilities:
- JSI
- CTU
Remote capabilities

JSI case

- Regular courses organized for Uppsala University (in person); September 2020 → migration to remote format
 - Multiple connections in parallel (Zoom), interaction with equipment
- October 2020 - June 2021: 2 × 1-semester practical exercises at JSI TRIGA reactor for Physics students at University of Ljubljana
 - One Zoom connection, several devices (laptops, tablet)
- July 2021 Contribution to MOBIL-APP virtual mobility (Aix-Marseille University)
Remote capabilities

JSI case

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847555
Remote capabilities

JSI case

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847555
Conclusions

- Existing needs for nuclear education
- ENEEP initiative → Dedicated platform providing experimental nuclear education
- Several formats, taylorable, group/individual
- Remote capabilities
- **Contact us!**
- eneep.org