Online optical refractive index measurement in research reactor core

FOURNEAU Gary(1), AGOYAN Marion(1,2), CHEYMOL Guy(2), LADACI Ayoub(1), MASKROT Hicham(1), FOURMENTEL Damien(1), DESTOUCHES Christophe(1), GIRARD Sylvain(2), BOUKENTER Aziz(2)

(1) CEA, (2) Laboratoire Hubert Curien, Université Jean Monnet

Context

There is a growing interest in fiber optic measurements for applications in radiation environments. They can monitor environmental parameters such as temperature, size, pressure, chemical composition, irradiation doses, and dose rates. Often, the developed systems imply no propagation of the light beam outside the fiber, but for some applications, fiber optic is combined with an optical system that focuses and/or collects the light beam. The question then arises not only about the impact of the RIA (Radiation-Induced Attenuation), but also of the radiation-induced change of the refractive index of the used glasses, which is a determining value for the optical function.

The chromatic confocal sensor

A development is on progress of a non contact displacement sensor able to operate under high neutron fluence (~10^20 n.cm^-2), high gamma dose (~GGy), and high temperature inside a research reactor.

Online measurement of the variation of the optical length and refractive index in TESCA

The first objective is to measure the refractive index change by white light interferometry. High neutron fluence is known to produce also density change leading to compaction in a silica bulk material. The targeted online measurement of refractive index (n) therefore becomes an optical length (n.L) measurement. We are also preparing pre and post-irradiation of glass samples to decouple variations of n and L.

The n and L variations of silica for example under high fluence ~10^19 n.cm^-2 (E>1MeV) and several GGY in gamma – is in the range of some 10^-4. The expected accuracy of the measurement is ~10^-4.

How do we get the value of optical path ?

The measurement system monitors the channeled spectrum describing the intensity given by the interference between reflection on each face of the sample.

\[I(\lambda, T) = I_0 \left[1 + b \cos \left(\frac{2 \pi (n(\lambda, T) \cdot L(T))}{\lambda} \right) \right] \]

We then apply a FFT on I(\sigma) with \(\sigma = 1/\lambda \). The abissa of the peak corresponds to the value of n.L after a correction required by the fact that n varies with \(\lambda \) (chromatism).

Using a double interferometer to increase the precision

We use 2 interferometers in series. The first one is our nL measurement system and the second one is a cavity not far from nL. The resulting channeled spectrum correspond to:

\[I(\lambda, T) = I_0 \left[1 + b \cos \left(\frac{2 \pi (n(\lambda, T) \cdot L(T) - L_C))}{\lambda} \right) \right] \]

With this new system, we have access to the value: n.L - L_C. That roughly permits to increase the accuracy in the ratio: n^2L/(n.L-L_C).

Conclusions

- In order to develop a rad-hard confocal chromatic sensor, data on the behavior of glasses under radiation are expected to result from the TESCA irradiation (2022, in the BR2 research reactor).
- We have developed a smart miniature device in order to measure by interferometry the variations of the optical path n * L of some glass samples under radiation environment. This device will be set in the research reactor’s core for online measurements.
- The robustness of the device has been tested by measuring the n.L variations with temperature, giving access to n(L) up to 350°C, data which are non available up to now in the literature for most of glasses.
- Work is in progress to consolidate the accuracy.