

1

The MicroRadon project

Everything you always wanted to know about radon but fail to find any data about it

Olivier Llido José Busto

What is radon?

Не

Ne

Rn

Oq

Yb

0

S CI

Se Br

Те

Po

116 Lv 117 **Ts**

- A noble gas => (almost) no chemistry
- Main isotope 222 Rn, T_{1/2} = 3.82 day
- Only trace quantities : $100 \text{ Bg/m}^3 \le 1.9*10^{-12} \text{ PPM}$!
- Human exposure: 70 % of the annual radiation dose from natural radiation sources
- Emanate from ground and building materials

CPPM tiels : 950 Bg/m³/m²

Olivier Llido José Busto

Radon vs low energy experiments

- 2 big questions for low energy particles experiments:
 - Is dark matter WIMP?
 - What is neutrino nature: Dirac or Majorana?
- Rare events => very low count rate (~10/year)
- Low energy events (kev-Mev)

Olivier Llido José Busto

Radon vs low energy experiments

- 2 big questions for low energy particles experiments:
 - Is dark matter WIMP?
 - What is neutrino nature: Dirac or Majorana?
- Rare events => very low count rate (~10/year)
- Low energy events (kev-Mev)
- Particles energies in the radon chain:

α	5-8 MeV
β	\leq 3.27 MeV
Ŷ	\leq 2.20 MeV
Nucleus recoil	~ 100 keV
(α,n) on light nucleus	

• Typical concentration (indoor): a few 10-100 Bq/m3

Olivier Llido José Busto

Radon vs low energy experiments

- 2 big questions for low energy particles experiments:
 - Is dark matter WIMP?
 - What is neutrino nature: Dirac or Majorana?
- Rare events => very low count rate (~10/year)
- Low energy events (kev-Mev)
- Particles energies in the radon chain:

α	5-8 MeV
β	≤ 3.27 MeV
Ŷ	≤ 2.20 MeV
Nucleus recoil	~ 100 keV
(α,n) on light nucleus	

- Typical concentration (indoor): a few 10-100 Bq/m3
 - => should achieve 1-10 µBq/m³ (or µBq/kg)

Olivier Llido José Busto

The presence of radon depends on:

²²⁶Ra concentration in materials

Olivier Llido José Busto ANIMMA 2021 The MicroRadon project CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

The presence of radon in the detector depends on:

- ²²⁶Ra concentration in materials
- History of materials

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

Direct background No radon => No background Non correlated background - Surface contamination - History of materials

The presence of radon in the detector depends on:

- ²²⁶Ra concentration in materials
- History of materials
- Temperature
- Composition of inter-grain: humidity, gas (He, Xe, air...))
- Porosity (self-adsorption)
- · ...

Olivier Llido José Busto ANIMMA 2021 The MicroRadon project

A, F => radon in inter-grain : transport B => radon stop in liquid => transport

E, G, D, C => radon is inserted in neighbouring grain: radon lost

The presence of radon in the detector depends on:

- ²²⁶Ra concentration in materials
- History of materials
- Temperature

. . .

- Composition of inter-grain: humidity, gas (He, Xe, air...))
- Porosity (self-adsorption)

High dependence on the gas environment

Not much data on exotic environments

Olivier Llido José Busto

The MicroRadon project

- Goals of the MicroRadon project :
 - Study the fundamental mechanisms of radon background (**emanation** and **transport**) as close as possible to the required experimental conditions;
 - Develop new materials and **capture** techniques;
- 1.5 years old
- 3 CNRS-IN2P3 laboratories are involved:

- Emanation studies are almost exclusively performed in N₂, He or vacuum.
- Very few data are available as function of temperature, gas composition in particular heavy gases (Xe).

- Emanation studies are almost exclusively performed in N₂, He or vacuum.
- Very few data are available as function of temperature, gas composition in particular heavy gases (Xe).

CENBG emanation setup

A **710 I** large chamber in stainless steel

70 I detector sensitivity ~**1-3 mBq/m**³

- For large samples to be qualified at **room temperature**
- Emanations performed in N₂, He, air or vacuum

+

 A 10 I chamber in a freezer (0 °C to -80 °C) for smaller samples and various gas composition (Xe especially)

Olivier Llido José Busto

- Emanation studies are almost exclusively performed in N₂, He or vacuum.
- Very few data are available as function of temperature, gas composition in particular heavy gases (Xe).

- Emanation studies are almost exclusively performed in N₂, He or vacuum.
- Very few data are available as function of temperature, gas composition in particular heavy gases (Xe).

Pore closure with decreasing temperature ?

- Study the fundamental mechanisms of emanation on a reference source as a function of:
 - Temperature
 - Humidity
 - Pressure
 - gases and in liquid gases.

Olivier Llido José Busto

MicroRadon - Diffusion

State of the art

• Few data exist on the diffusion as function of temperature or gas.

 Physical capture on surface : Van der Waal forces + polarizability

- Physical capture on surface : Van der Waal forces + polarizability
- For the moment almost only activated charcoal has been studied with N₂ gas flow

- No permanent capture (adsorption desorption equilibrium)
- Slowdown of radon in the column
- If radon decays in the adsorbent => definitly captured
- => The aim is to slow down the radon enough to achieve a suitable concentration at the outlet.

Olivier Llido José Busto

- 2 tests bench at CPPM and IPHC
- Small samples: 0.25 1 g
- From +20 to -80 °C
- Dynamical adsorption study ~ 1000 Bq/m³ of ²²²Rn at 60 l/h
- Open or close circuit (to save gas, Xe...)
- Measurment of radonized samples with a Ge detector

Materials to be tested

- Silver zeolites => huge improvement of capture capacity (collaboration with IEAP Pragues and Alberta University)
- Cryptophanes (molecular cages) => high selectivity of captured atom (Rn/Xe) (collaboration with ISM2)
- New carbon based materials, carbon foam... (collaboration with Jean Lamour Institut)

Olivier Llido José Busto

Materials to be tested -

- Silver zeolites => huge improvement of capture capacity (collaboration with IEAP Pragues and Alberta University)
- Cryptophanes (molecular cages) => high selectivity of captured atom (Rn/Xe) (collaboration with ISM2)
- New carbon based materials, carbon foam... (collaboration with Jean Lamour Institut)
- Better results with silver zeolites than with charcoal
- Huge effect of silver in radon adsorption !
- Why silver ? Nobody knows !

Conclusions and prospects

- Radon is one of the most complex backgrounds.
- A huge contributor to background in low energy experiments.
- Significants progress have been made over the past decades, but there is still a significant lack of data.
- The MicroRadon project can contribute to a **better understanding of the mechanisms** of radon background and how to reduce it.
- New tests bench to build:
 - a radon chamber to study the surface contamination by the ²¹⁰Pb ;
 - radon emanations in liquid-gas.
- A lot of new adsobent materials to test (and synthetize! *Collaboration with chemists*).

Conclusions and prospects

- Radon is one of the most complex backgrounds.
- A huge contributor to background in low energy experiments.
- Significants progress have been made over the past decades, but there is still a significant lack of data.
- The MicroRadon project can contribute to a **better understanding of the mechanisms** of radon background and how to reduce it.
- New tests bench to build:
 - a radon chamber to study the surface contamination by the ²¹⁰Pb ;
 - radon emanations in liquid-gas.
- A lot of new adsobent materials to test (and synthetize! *Collaboration with chemists*).
- Still a lot of work and a lot of (new) questions. Come and work with us :-)