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activity of the radioisotope (MBq)
mass of the element (mg).Specific activity →

Radionuclidic purity → activity of the desired nuclei 
overall activity of the compound

Radionuclides properties:

Decay properties

Half-life

Chemical properties

Production Feasibility

Therapeutic agents

Diagnostic agents
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• High neutron/proton fluxes required

• Irradiation of targets of the same element

• Direct reaction methods -> A(p,x) or A(n,x)…

• Target with large activation levels

• Chemical separation required

→ Isotopic impurities (Low S.A.)

Radionuclides from traditional methods:

Cyclotron

Nuclear reactor

With the innovative ISOL technique:
• Radionuclides can be easily produced as carrier-free isotopes (Mass Separation)
• No nuclear reactor required for several beta-radionuclides
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The ISOLPHARM method for the production of
radiopharmaceuticals is a INFN PATENT

Patent title:
«Method for producing beta emitting radiopharmaceuticals 

and beta emitting radiopharmaceuticals thus obtained»

Flexible production, high specific activity & radionuclidic purity
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Diagnostic isotopes Therapeutic isotopes

Among the wide set of ISOL 
producible nuclides, almost 
60 show relevant properties 

for medicine, in terms of 
half-life, decay radiation
and chemical behavior

Theragnostic isotopes
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Diagnosis Therapy Theragnostics

Early feasibility studies were focused 
on state-of-art radionuclides:

ISOLPHARM true potential can be expressed if 
innovative/less available nuclides are considered

67Cu111Ag

43Sc

152Tb 155Tb149Tb

47Sc

64Cu

• t½: 233 min
• 100% β+/ϵ (PET)

• t½: 12.701 h
• 38,5% β- (191 keV av.)
• 61,5% β+ (PET)

• t½: 2.58 d
• 100% β- (162 keV av.)

• t½: 7.45 d
• 100% β- (360 keV

av.)

• t½: 3.4 d
• 100% β- (162 keV av.)

• t½: 4.12 h
• 16.7% α (3.97 MeV)

• t½: 17.5 h
• 100% β+/ϵ (PET)

• t½: 5.32 d
• 100% β+/ϵ (SPECT)

F. Borgna et al., Appl. Radiat. Isot., 2017
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To go beyond the results of ISOLPHARM_Ag and further promote the
research on a 111Ag based radiopharmaceutical by:

1. Producing the first batches of radioactive 111Ag via neutron irradiation at
the existing TRIGA Mark II research reactor at LENA.

2. Testing in-vitro and in-vivo the first 111Ag radiolabeled compounds
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Task 1: Physics

MC simulations: CloudVeneto 111Ag production and quality control: LENA 

Legnaro National Laboratory
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● Fair energy resolution < 30 keV 
at    1.3 MeV.

● Fast anode signal ~100ns.
● Fast acquisition rate up to 500 

kcps
● Significant intrinsic background 

to be considered ( ~ 1 kHz)

● Very good energy resolution:  2 
keV at 1.3 MeV.

● Slow preamplified signal (~ 100 
𝝁s).

● Typical acquisition rate < 10 
kcps.
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The spectroscopic system consists of two detectors: a germanium detector and a lanthanum bromide scintillator.
The system has been characterized offline and compared with Monte Carlo simulations.
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6 hours after the end of irradiation (taken with HPGe detector) 
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6 hours after the end of irradiation (taken with HPGe detector) 
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➔ 111Ag yields measured with 
HPGe and LaBr3 are 
compatible with each other.

➔ MCNPX seems to 
overestimate the activity of  
111Ag (~20%)

➔ PHITS underestimate the 
value from measurements 
(~90 %)

62.7gr sample
Third experiment
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We can produce 2 mCi of 111Ag starting from 100µCi of 110Pd after 3 days 
of irradiation (6 hours per days). 

- Further simulation with MCNPX for understand the overstimation
- Customization of PHITS with new cross section
- Carrying on a detailed analysis of 111Ag 𝛄-lines.
- Analyzing data taken with LaBr3 + DT5725 for comparison.
- Analyzing 𝛄-𝛄 coincidence data taken with DT5780.


