



# ISOLPHARM\_EIRA

# A new approach to create high purity radionuclides for nuclear medicine applications

### Luca Stevanato

INFN Padova University Of Padova



Prague, Czech Republic

June 21-25, 2021



### Radiopharmaceuticals













# **Production methods**



### **Radionuclides from traditional methods:**

- High neutron/proton fluxes required
- Irradiation of targets of the same element
- Direct reaction methods -> A(p,x) or A(n,x)...
- Target with large activation levels
- Chemical separation required

→ Isotopic impurities (Low S.A.)

### With the innovative ISOL technique:

- Radionuclides can be easily produced as carrier-free isotopes (Mass Separation)
- No nuclear reactor required for several beta-radionuclides





ISOLPI IARM EIRA

Flexible production, high specific activity & radionuclidic purity





# Possible ISOL isotopes medical interest









### **Possible ISOL isotopes medical interest**









# Main goal of ISOLPHARM\_EIRA



- To **go beyond the results of ISOLPHARM\_Ag** and further promote the research on a <sup>111</sup>Ag based radiopharmaceutical by:
- 1. Producing the first batches of radioactive <sup>111</sup>Ag via neutron irradiation at the existing TRIGA Mark II research reactor at LENA.
- 2. Testing *in-vitro* and *in-vivo* the first <sup>111</sup>Ag radiolabeled compounds









Task 1: Physics



#### MC simulations: CloudVeneto



ISOLPI IARM EIRA

<sup>111</sup>Ag

#### Legnaro National Laboratory



#### <sup>111</sup>Ag production and quality control: LENA









### Spectroscopic system for <sup>111</sup>Ag characterization



The spectroscopic system consists of two detectors: a germanium detector and a lanthanum bromide scintillator. The system has been characterized offline and compared with Monte Carlo simulations.







### Spectroscopic system for <sup>111</sup>Ag characterization











# Irradiation Experiments at L.E.N.A.



| 28/10/2020<br>First Experiment                                                                                         | 10/11/2020<br>Second Experiment                                                                                    | 09/02/2021<br>Third Experiment                                                                                           |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Irradiation time 1 hour<br/>between 11:22-12:22</li> <li><sup>nat</sup>Pd sample mass: 55.5<br/>mg</li> </ol> | <ol> <li>Irradiation time 1 hour<br/>between 8:50 - 9:50</li> <li><sup>nat</sup>Pd sample mass: 42.1 mg</li> </ol> | <ol> <li>Irradiation time 1 hour<br/>between 11:28 - 12:28</li> <li><sup>110</sup>Pd sample mass: 62.7<br/>mg</li> </ol> |
| Data acquisition between 28/10<br>and 02/11 with the LaBr, detector                                                    | Data acquisition between 10/11<br>and 17/11 with both LaBr_ and                                                    | Data acquisition between 09/02                                                                                           |

and DT5725 digitizer. HPGe.

<sup>nat</sup>Pd

Data acquisition between 09/0 and 17/02 with both LaBr<sub>3</sub> and HPGe.

<sup>110</sup>Pd





### Spectroscopic analysis of irradiated samples











### 6 hours after the end of irradiation (taken with HPGe detector)







# <sup>110</sup>Pd Irradiation - <sup>111</sup>Ag



→ <sup>111</sup>Ag yields measured with HPGe and LaBr<sub>3</sub> are compatible with each other.

→ MCNPX seems to overestimate the activity of <sup>111</sup>Ag (~20%)

→ PHITS underestimate the value from measurements (~90 %)



SPES exotic beams for medicine







We can produce 2 mCi of <sup>111</sup>Ag starting from 100µCi of <sup>110</sup>Pd after 3 days of irradiation (6 hours per days).

### What's next?

- Further simulation with MCNPX for understand the overstimation
- Customization of PHITS with new cross section
- Carrying on a detailed analysis of  $^{111}\text{Ag}\,\gamma\text{-lines}.$
- Analyzing data taken with LaBr<sub>3</sub> + DT5725 for comparison.
- Analyzing  $\gamma$ - $\gamma$  coincidence data taken with DT5780.

