DE LA RECHERCHE À L'INDUSTRIE

CADARACHE

SENSITIVITY ANALYSIS OF AN ADVANCED MEASUREMENT METHOD FOR THERMAL NEUTRONS ABSORBERS DETECTION IN IRRADIATED BERYLLIUM.

M. WRÓBLEWSKA, D. BLANCHET, A. LYOUSSI, P. BLAISE, Z. MARCINKOWSKA, A.BOETTCHER, J. JAGIELSKI,

MAŁGORZATA WRÓBLEWSKA NCBJ - CEA – AMU MALGORZATA.WROBLEWSKA@CEA.FR

ANIMMA 2021 Prague, Wednesday, June 23th2021

- Poisoning effect in MTRs
- Experimental setup
- Sensitivity analysis
- Conclusion

Beryllium damage mechanisms

ANIMMA 2021, Prague, June 23 2021

Mechanical failure examples

View of the SM and MIR reactors beryllium blocks irradiated to fast neutron fluence of F~6·10²² cm⁻²

V. Chakin et al., 1st International Symposium on Material Testing Reactors. Japan. 2008.

F. Joppen, E. Koonen, S. Van Dijck. International Atomic Energy Agency (IAEA)

E. H. Smith. Et. al. Symposium on material performance in operating nuclear systems. August 1973.

ANIMMA 2021, Prague, June 23 2021

JMTR samples corrosion

Mechanical failure examples

Poisons production (n,α)

Realistic scenario in MARIA

1 CYCLE = 100h on power + 68h off power **10.5 YEARS OPERATION + 27 YEARS OFF** After 37.5 years ⁶Li saturation 105 ^{6}Li 10¹⁹ ^{3}He 95 ^{3}H 85 1018 t [cm] 75 [at · cm⁻³] 65 1017 Beryllium e 55 ^{6}Li 10¹⁶ 45 Concentrations ^{3}He 35 off power periods ³He ^{3}H 1015 concentration increases 25 15 10.5 years 27 years 1014 5×10^{17} 1.5×10^{18} 2×10^{18} 10^{18} in MTR core in storage pool Concentrations [at · cm⁻³] 1013 **SPECIFIC ACTIVITY:** ~1GBq /1g of Be 10¹² 5 10 15 20 25 30 35 38 Time [years] Simplifying assumptions; for detailed information: neutronic tools Aix+Marseille NCBJ

- Poisoning effect in MTRs
- Experimental setup
- Sensitivity analysis
- Conclusion

Experiment, analysis and validation

ANIMMA 2021, Prague, June 23 2021

MEASUREMENT OF THERMAL NEUTRONS ATTENUATION IN FRESH /IRRADIATED BERYLLIUM

Experiment – transmission method

- Poisoning effect in MTRs
- Experimental setup
- Sensitivity analysis
 - Neutron source
 - Moderator
 - Detector
- Conclusion

ANIMMA 2021, Prague, June 23 2021

16

S S S

- Poisoning effect in MTRs
- Experimental setup
- Sensitivity analysis
 - Neutron source
 - Moderator
 - Detector
- Conclusion

Cez

20

NCBJ

21

Neutron detector and source choice

* Based on PuBe neutron source data from:

Aix*Marseille

1. M.E. Anderson, R.A. Neff, Neutron energy spectra of different size 239Pu-Be (α , n) sources. Nucl. Instr. and Meth. 99 (1972) 231-235.

2. Lockhart, M.L. & McMath, G.E.. (2017). Verification of Plutonium Content in PuBe Sources Using MCNP[®] 6.2.0 Beta with TENDL 2012 Libraries. Physics Procedia. 90. 305-312. 10.1016/j.phpro.2017.09.016.

* Based on PuBe neutron source data from:

Aix+Marseille

1. M.E. Anderson, R.A. Neff, Neutron energy spectra of different size 239Pu-Be (α , n) sources. Nucl. Instr. and Meth. 99 (1972) 231-235.

2. Lockhart, M.L. & McMath, G.E.. (2017). Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries. Physics Procedia. 90. 305-312. 10.1016/j.phpro.2017.09.016.

24

²³⁹PuBe + ²³⁵U Fission chamber

C22

Conclusions

- The chosen configuration of the neutron source-moderator-detector has been tested experimentally
- We obtained good signal resolution
- We still need to verify the beryllium activation and total gammas in the system
- And to perform more measurements

ANY QUESTIONS?

THANK YOU!

