Deconvolution methods used for the development of a neutron spectrometer

Primary author & presenter:
SIMONETTI, Claude-Alexandre
(EAMEA / LPC Caen / ENSICAEN)

Co-authors:
Dr LABALME, Marc (LPC Caen - ENSICAEN)
Mr TROLET, Jean-Lionel (EAMEA Cherbourg)
Dr MARY, Patrick (EAMEA Cherbourg)
Introduction

• « Ratemeter / spectrometer »:
 • Detection threshold : $H^*(10) = 1 \mu Sv/h – 10 mSv/h$ in <5-10 minutes
 • 0 – 20 MeV neutron spectrometer
 • Transportable < 15 kg

• Optimize a unique multi-detectors Bonner sphere:
 • Simulations with GEANT4
 • Unfolding methods to pre-validate the model
Introduction

- **Idea: multi-detectors Bonner sphere**
 - PE sphere to moderate neutrons (Ø = 25 cm)
 - LiF Detectors at different depths to be sensitive to different energies:
 - $^6\text{Li}(n,\alpha)^3\text{H}, \ Q = +4.78 \text{ MeV}, \ \sigma = 937 \text{ barns}$
 - 1.0 cm x 1.0 cm x 0.04 cm
 - $\rho_{\text{LiF}} = 2.64 \text{ g.cm}^{-3}$
 - 14.3% ^6Li (8.8\,\cdot1021 cm$^{-3}$) and 85.7% ^7Li

→ **Select the most appropriate geometry and unfolding method**

Beam of monoenergetic neutrons from 10⁻⁹ to 10² MeV
Introduction: unfolding, general idea

Matrix equation RX = M, with vector X unknown.

- X: neutron source vector to be retrieved (cm\(^{-2}\)) : m energy groups
- M: measure vector (no unit) : n detectors
- R: response matrix, obtained with GEANT4 (cm\(^{2}\)) : size : n x m
 - n: number of detectors or groups of detectors
 - m: number of groups of energies
1. GEANT4 simulations

To build the measure vectors M:

- 4 reference spectra
- 4×10^8 neutrons
- Surf. Fluence $\Phi = 141\ 471\ \text{cm}^{-2}$

- X_{AmBe} (bare $^{241}\text{AmBe}) \rightarrow M_{\text{AmBe}}$
- X_{Cf} (bare $^{252}\text{Cf}) \rightarrow M_{\text{Cf}}$
- $X_{\text{AmBe}_\text{mod}}$ (mod. AmBe) $\rightarrow M_{\text{AmBe}_\text{mod}}$
- X_{Cf_mod} (mod. Cf) $\rightarrow M_{\text{Cf}_\text{mod}}$

(6 cm PE)
1. GEANT4 simulations

To build the response matrix R:

- 56×10^8 neutrons from 10^{-9} to 10^2 MeV
- Surface fluence: $\Phi = 141\ 471\ \text{cm}^{-2}$
- Simulation n°j with j from 0 to 55:
 - Neutrons energy: $E_j = 10^{-9+0.2j}$ MeV
 - Parallel monoenergetic neutrons: R_{parallel} (done)
 - Isotropic monoenergetic neutrons: $R_{\text{isotropic}}$ (to do)
1. R matrix construction

- Multi-detectors Bonner sphere
 - Parallel monoenergetic beams: 10^{-9} to 10^2 MeV
 - Start with one detector each cm along x, y, z
 - Then: try to optimize the layout of the detectors
 \rightarrow new R matrix
1. Responses (r constant)

Response (cm2) for detector distances to center between 0 and 12 cm.

Position optimization:
- Simulations to determine responses, function of depth
- Very sensitive next to the surface
 - More detectors to put next to the surface
 - Less detectors to put next to the center
1. Responses (r constant)

From the previous histogram:
- 6 selected depths
- 6 groups of detectors
(Still to be optimized)
2. Unfolding methods

- **UMG 3.3 (NEA):**
 - GRAVEL: iterative algorithm (SAND-II modified)
 - MAXED: maximum of entropy algorithm
 - 6 groups of 6 equidistant detectors (= 36 detectors)

- **1 “personal”* method:**
 - Maximum of {likelihood and entropy}
 - Detectors taken one by one

3. Unfolding results for Cf $\left(H^*(10) \sim 50 \, \mu Sv \right)$

For the first iteration of the algorithm, it is important to define a guess spectrum: Flat, bare or moderated spectrum, etc.

Conversion into $H^*(10)$
3. Results for moderated AmBe ($H^*(10) \sim 50 \mu Sv$)

If moderated awaited spectrum, it is very important to have at least a moderated guess spectrum.
3. Results of unfolding \((H^*(10) \sim 0.5 \, \mu \text{Sv})\)

Conversion into \(H^*(10)\)

Conversion into \(H^*(10)\)
4. Preliminary tests on ZnS:LiF detectors

AmBe source: \(\sim 3 \mu \text{Sv/h} \)

Detectors behind 3.6 cm of paraffine

\(\sim 0.4 \) detected neutrons / cm\(^2\)

First encouraging results

Could give sufficient statistics

\(\rightarrow \) tests behind different thicknesses of paraffine to try to unfold
Conclusion

- Better to have a guess of the spectrum before unfolding
- If not, it is better to pre-define
 - A rapid component
 - An epithermal component?
 - A thermal component
- One can imagine an automatisation
 - Comparison of the χ^2 of many different guess spectra at the first iteration
 - The spectrum which gives the minimum χ^2 could be adopted
 - Then, the algorithm could start
- Why a personal unfolding method?
 - For a faster acquisition on a PC (MAXED/GRAVEL on older versions of Windows)
 - But some convergence parameters are still to optimize
Conclusion

• General simulation results with 36 detectors:
 • < 15% from reference spectra
 • Even with low ambient dose equivalent $H^*(10) \approx 1 \mu Sv/h$ in ~10 minutes

• To validate the multi-detectors Bonner sphere concept:
 • More accurate modelization of LiF detectors: ZnS(Ag) + epoxy to add to the material composition
 • 45 degrees parallel-beam + isotropic-beam-response matrices to build

• Next steps:
 • prototype to develop and test
 • perhaps machine learning could help