# Deconvolution methods used for the development of a neutron spectrometer



**Primary author & presenter :** SIMONETTI, Claude-Alexandre (EAMEA / LPC Caen / ENSICAEN)

**Co-authors :** 

Dr LABALME, Marc *(LPC Caen - ENSICAEN)* Mr TROLET, Jean-Lionel *(EAMEA Cherbourg)* Dr MARY, Patrick *(EAMEA Cherbourg)* 







### Introduction

- « Ratemeter / spectrometer »:
  - Detection threshold :  $H^{*}(10) = 1 \mu Sv/h 10 mSv/h$  in <5-10 minutes
  - 0 20 MeV neutron spectrometer
  - Transportable < 15 kg

#### • Optimize a unique multi-detectors Bonner sphere:

- Simulations with GEANT4
- Unfolding methods to pre-validate the model







# Introduction

- Idea : multi-detectors Bonner sphere
  - PE sphere to moderate neutrons ( $\emptyset$  = 25 cm)
  - LiF Detectors at different depths to be sensitive to different energies:
    - ${}^{6}\text{Li}(n,\alpha){}^{3}\text{H}$ , Q = +4,78 MeV,  $\sigma$  = 937 barns
    - 1.0 cm x 1.0 cm x 0.04 cm
    - $\rho_{\rm liF} = 2.64 \ {\rm g.cm^{-3}}$
    - 14.3% 6Li (8.8.10<sup>21</sup> cm<sup>-3</sup>) and 85.7% 7Li

# → Select the most appropriate geometry and unfolding method



Beam of monoenergetic neutrons from  $10^{-9}$  to  $10^2$  MeV









# Introduction: unfolding, general idea

### Matrix equation RX=M, with vector X unknown.

- X : neutron source vector to be retrieved (cm<sup>-2</sup>) : m energy groups
- M : measure vector (no unit) : n detectors
- R response matrix, obtained with GEANT4 (cm<sup>2</sup>) : size : n x m
  - n : number of detectors or groups of detectors
  - m : number of groups of energies







### 1. GEANT4 simulations



# 1. GEANT4 simulations



#### To build the response matrix **R** :

- 56 x  $10^8$  neutrons from  $10^{-9}$  to  $10^2$  MeV
- Surface fluence :  $\Phi = 141 471 \text{ cm}^{-2}$
- Simulation n°j with j from 0 to 55 :
  → Neutrons energy : E<sub>j</sub> = 10<sup>(-9+0,2,j)</sup> MeV
  - → Parallel monoenergetic neutrons : R<sub>parallel</sub> (done)
  - Isotropic monoenergetic neutrons : R<sub>isotropic</sub> (to do)







# 1. R matrix construction

#### • Multi-detectors Bonner sphere

- Parallel monoenergetic beams : 10-9 to 10<sup>2</sup> MeV
- Start with one detector each cm along x, y, z
- Then : try to optimize the layout of the detectors
  → new R matrix









## 1. Responses (r constant)

Response (cm<sup>2</sup>) for detector distances to center between 0 and 12 cm.



#### **Position optimization :**

- Simulations to determine responses, function of depth
- Very sensitive next to the surface
- More detectors to put next to the surface
- Less detectors to put next to the center



### 1. Responses (r constant)

Response ( $cm^2$ ) for neutrons energies between 10<sup>-9</sup> and 10<sup>2</sup> MeV.



### From the previous histogram:

- 6 selected depths
- → 6 groups of detectors

(Still to be optimized)



# 2. Unfolding methods

- UMG 3.3 (NEA):
  - GRAVEL : iterative algorithm (SAND-II modified)
  - MAXED : maximum of entropy algorithm
  - 6 groups of 6 equidistant detectors (= 36 detectors)
- 1 "personal"\* method:
  - Maximum of {likelihood and entropy}
    - Detectors taken one by one

\*Inspired from the publication « Neutron Spectra Unfolding with Maximum Entropy and Maximum Likelihood », Shikoh ITOH & Toshiharu TSUNODA : https://doi.org/10.1080/18811248.1989.9734394.







### 3. Unfolding results for Cf (H\*(10)~50 µSv)

For the first iteration of the algorithm, it is important to define a guess spectrum : Flat, bare or moderated spectrum, etc.



11

### 3. Results for moderated AmBe ( $H^{(10)}$ ~50 $\mu$ Sv)

Awaited spectrum : AmBe mod. Guess spectrum : Flat.



If moderated awaited spectrum, it is very important to have at least a moderated guess spectrum.

### 3. Results of unfolding (H\*(10)~0.5 µSv)

Awaited spectrum : Cf. Guess spectrum : AmBe\_mod.

Awaited spectrum : Cf. Guess spectrum : AmBe\_mod.

13



### 4. Preliminary tests on ZnS:LiF detectors





AmBe source : ~3muSv/h Detectors behind 3.6 cm of paraffine ~0,4 detected neutrons / cm<sup>2</sup>

#### First encouraging results

Could give sufficient statistics

→ tests behind different thicknesses of paraffine to try to unfold







### Conclusion

- Better to have a guess of the spectrum before unfolding
- If not, it is better to pre-define
  - A rapid component
  - An epithermal component?
  - A thermal component
- One can imagine an automatisation
  - $\bullet$  Comparison of the  $\chi^2$  of many different guess spectra at the first iteration
  - $\bullet$  The spectrum which gives the minimum  $\chi^2$  could be adopted
  - Then, the algorithm could start
- Why a personal unfolding method?
  - For a faster acquisition on a PC (MAXED/GRAVEL on older versions of Windows)
  - But some convergence parameters are still to optimize







### Conclusion

- General simulation results with 36 detectors:
  - < 15% from reference spectra
  - Even with low ambient dose equivalent H\*(10)  $\approx$  1 µSv/h in ~10 minutes
- To validate the multi-detectors Bonner sphere concept:
  - More accurate modelization of LiF detectors : ZnS(Ag) + epoxy to add to the material composition
  - 45 degrees parallel-beam + isotropic-beam-response matrices to build
- Next steps :
  - prototype to develop and test
  - perhaps machine learning could help





