

Contamination Tests of New Silicone-Based Detectors for Beta-Alpha Radiation in Water

P. Sartori¹, P. Carconi², P. De Felice², A. Fazio², M. Lunardon³, L. Stevanato¹

¹University of Padova, Physics and Astronomy Department, Padova, Italy. ² ENEA, National Institute of Ionizing Radiation Metrology, Casaccia R.C., Rome, Italy.

³University of Padova and INFN, Physics and Astronomy Department, Padova, Italy.

paolo.sartori.3@unipd.it

1. Abstract

We present the results of radioactivity contamination tests on a novel contamination-safe scintillation detector for alpha and beta radiation detection in water, as follow-up of the TAWARA_RTM project. This detectors are large-area silicone-based scintillators with functionalized surface, representing an improvement in the realization of radioactivity monitors for water with high sensitivity and reasonable costs.

3. Materials **Cross-section** Silicone matrix at 40x optical $(\approx 1 \text{ mm})$ transmission ZnS:Ag powder microscope (≈ 50 µm) nanometric fluorinated film

Passive silicone matrix: polydimethylsiloxane *Gelest* DMS-V21 $/ CH_3 \setminus CH_3$

After cross-linking \rightarrow elastomeric material

Dipartimento

e Astronomia

Galileo Galilei

di Fisica

____ require Very low intrinsic background Avoid window between water and detector active volume

Large area

Problem: direct contact with water

- If no protective layer

2. Intro

- detector surface contamination passive layer contamination

Our solution: large area silicone-based scintillator with functionalized surface

- no need of passive protection layer/window
- low surface contamination
- can be easily decontaminated
- flexible

4. Production @University of Padova

- 1. Mixing liquid silicone and cross-linking agent
- 2. Add ZnS: Ag powder
- 3. Pour the liquid mixture in a mold \rightarrow 1 mm thick layer
- 4. Powder sedimentation overnight ($\rho_{silicone} \approx 1 \text{ g/cm}^3$, $\rho_{ZnS:Ag} \approx 4 \text{ g/cm}^3$) $\rightarrow \approx 50 \text{ }\mu\text{m}$ layer with 60% wt of ZnS:Ag
- 5. Silicone cross-linking in oven @70°C, 1 h \rightarrow solid elastomeric slab can be peeled off
- 6. Surface functionalization with fluorinated silane film by vapour phase deposition

Active silicone matrix:

or

- Hydrophobic Transparent in the range 330-2200 nm Wide range of temperature $(-100 - 250^{\circ}C)$
- polydiphenyl-co-dimethylsiloxane Gelest PDV-2331 + - primary dopant: 2,5-diphenyl oxazole (1.0%wt) - secondary dopant: Lumogen F Violet 570 (0.05%wt)

EMISSION SPECTRUM

Istituto Nazionale di Fisica Nucleare

Sezione di Padova

After cross-linking \rightarrow elastomeric material Hydrophobic Wide range of temperature $(-100 - 250^{\circ}C)$

Inorganic alpha scintillator: ZnS:Ag powder *Eljen* EJ-600 (5.5 mg/cm²)

400

WAVELENGTH (nm

300

350

450

Fluorinated protective film: nanometric trichloro(1H,1H,2H,2H-perfluorooctyl)silane film

Fluorinated organic chain \rightarrow omniphobic layer reduce surface contamination

5. Detection performance @University of Padova

Light output spectra of standard commercial *Eljen* samples and silicone-based samples

qlong {abs(psd)<0.5 && qlong<100000}		
	htemp	

Performance with respect to

6. Contamination tests @ ENEA

Samples 5 x 5 cm^2 square detectors:

- passive silicone + ZnS:Ag
- passive silicone + ZnS:Ag + fluorosilane
- active silicone + ZnS:Ag
- 4. active silicone + ZnS:Ag + fluorosilane
- 5. Eljen EJ-440 discs
- (SA) alpha detector (SA-S) alpha detector alpha/beta detector (SAB) alpha/beta detector (SAB-S) reference
- Couples of samples mounted back-to-back on plastic supports and sealed at the edges
- Sets of 8 couples are mounted on a rack attached to the moving arm of a dip-coater

uuuu

«soft» wash

«strong» wash

7. Contamination measurements @ ENEA

Residual contamination measured using a very low-background and calibrated gamma detection system

Results:

- Contamination level saturates after just some minutes
- Approx. linear growth of contamination with increasing specific activity
- Silicone-based detector less contaminate by a factor 10÷20 with respect to commercial EJ-440
- Fluorinated film further decrease residual contamination

After contamination, samples are **rinsed with D.I.** water and discs are cut out

Decontamination tests:

- A sub-set of samples is washed after contamination following different procedures
 - immersion in a solution of CONTRAD 2000 for 30'
 - immersion in a solution of HCI 0.5M for 30'
 - immersion in a solution of CONTRAD 2000 for 30' + rubbing with a soft towel
 - immersion in a solution of HCl 1.5M for 30'

*Detector performances are not affected by the decontamination procedures

8. Conclusions

- good detection efficiency for alpha and beta radiation
- high hydrophobicity, chemical resistance and long-term stability of the surface
- **negligible contamination level** after exposition to radioactive aqueous solutions
- possibility to **cleanup** the surface from possible residual contaminations using chemical cleaning agents without damaging the detector
- low production cost

Effect of Decontamination procedures:

References

- Quaranta A. et al., "Doping of polysiloxane rubbers for the production of organic scintillators", Opt. Mat. 32 (2010)
- Dalla Palma M. et al., "Non-toxic liquid scintillators with high light output based on phenyl-substituted siloxanes", Opt. Mat. 42 (2015)