

Novel neutron detector assembly based on SiPM readout to be coupled with the Active Target for SPES

F. Pino^{1*}, J. Delgado¹, G. Mantovani¹, L. Pancheri², D. Brunelli², D. Fabris³, C. L. Fontana¹, S. Moretto^{1,3}

¹Department of Physics and Astronomy "Galileo Galilei", University of Padova, Italy ²Department of Industrial Engineering, University of Trento, Italy ³INFN Sezione Padova, Italy

* felix.pino@pd.infn.it

SPES facility at Legnaro (Italy)

Second generation ISOL facility

Production of exotic beams (p-induced fission on UCx)

Four phases

Re-acceleration of **exotic beams** with the ALPI linac. Mainly **Neutron–rich** ions from

Active Target TPC

$200\mu A$, 40 MeV proton beam

NFN

- Develop a compact device capable to discriminate, using pulse shape analysis, between n and γ .
 - ⁸Li + ⁴He \longrightarrow ¹¹B + n ${}^{6}\text{Li} + {}^{3}\text{He} \longrightarrow {}^{8}\text{B} + n$ $^{34}Ar + ^{3}He \longrightarrow ^{36}Ca + n$
- Taking advantage of recent improvements in SiPM technology.

F. Pino

– high gain

DEGLI STUDI DI PADOVA

- extremely good timing performance
- low operative voltage
- insensitivity to magnetic field

Experimental set-up

Advansid Large Area SiPMs

• Arrays (16 ch) SiPM AdvanSiD

45

	RGB-SiPM	NUV-SiPM
SiPM size	4x4 mm ²	
Cell number	9340/ch	
Cell size (pitch)	40µm× 40µm	
Recharge time constant	50 ns	70 ns
Peak sensitivity wavelength	550 nm (32.5 %)	420 nm (43 %)
Breakdown voltage, typ	27 V	26 V
Dark Count Rate	< 200kHz/mm ² @ 4V OV	< 100kHz/mm ² @ 4V OV

For comparison:

PMT Hamamatsu 2", H1949-51 (rise time = 1.3 ns)

Experimental set-up DAQ

 Pulse recording and run online advanced algorithms (FPGA) for digital pulse processing (PSD, etc.)

- ABCD software
 <u>https://github.com/ec-jrc/abcd/</u>
- AmBe (2x10⁵ n/s)
- 22 Na γ source

Universită degli Stud di Padova

Double gate integration method for PSD

Partial integral, Q_{fast}

• Total integral, Q_{total}

Sampling rate: 250 MHz (725)

• Possibility to get for each event (pulse):

• ADC resolution: 14 bit

SiPM (array 4x4) preamplifier design and characterization

- 4 series x 4 parallel SiPM
- Transimpedance amplifier based on Ultra-Low Noise, High-Speed OpAmp (LMH6629)

Supply/bias board: - Input 9V-14V - Output +2.5V -2.5V / 120V

Plastic EJ-276 1"x 1"

Q_tail / Q_tota

Plastic EJ-276G 1"x 1"

NFN

800

Q_tail / Q_tota

0.5

0.3

0.2

0.1

• Plastic EJ-299 light yield is 65% respect to liquids

15000

PMT

FoM = 1.4

20000

• Light guide -> doesn't help!

10000

• Cover more area?

5000

F. Pino

25000 Q_total (a. u.) 10

Conclusions and next steps

- Main achievement:
 - Good n/ γ discrimination using large area SiPM read-out / large-sized scintillators
 - Till now reported only using small SiPMs and plastic scintillators (~ units of cm³)

- New read-out configurations (covered area and light yield)
- Faster digitizer
- Alternative data analysis, FFT

Active Target

Depending on the case of study (reaction):

- Coverage of large solid angle -> Liquids
- Small solid angle-> Plastics
- SrI₂(Eu), CsI(Tl) / SiPM; for gamma and charge particles

Next steps

Thank you!!!

F. Pino