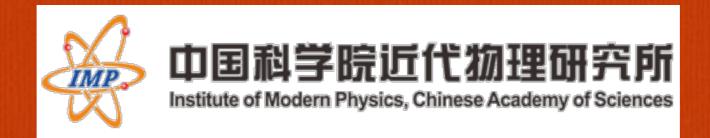
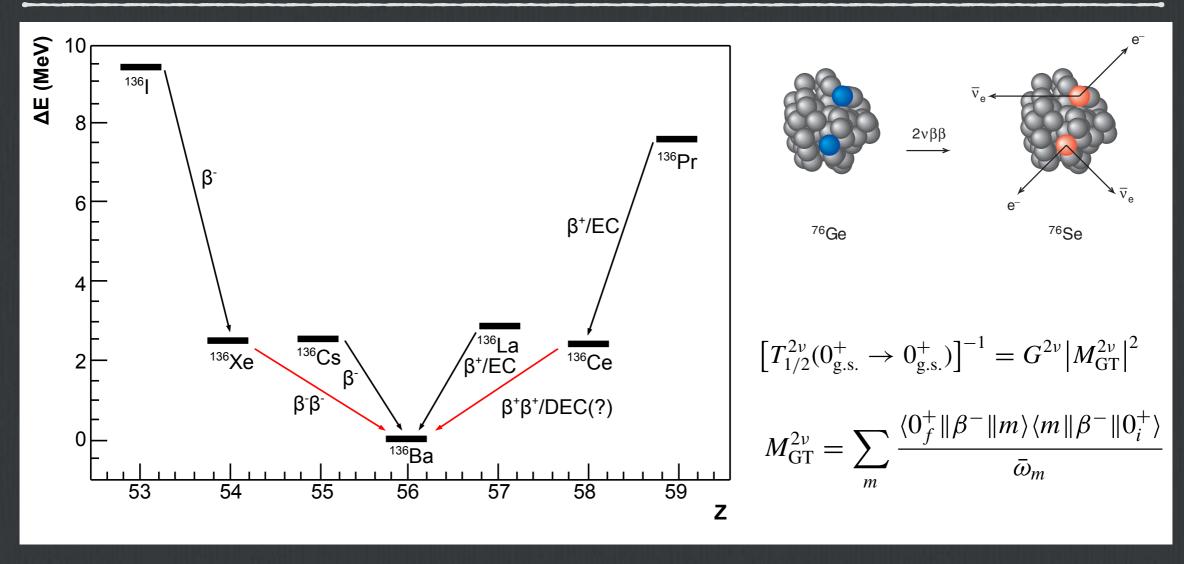
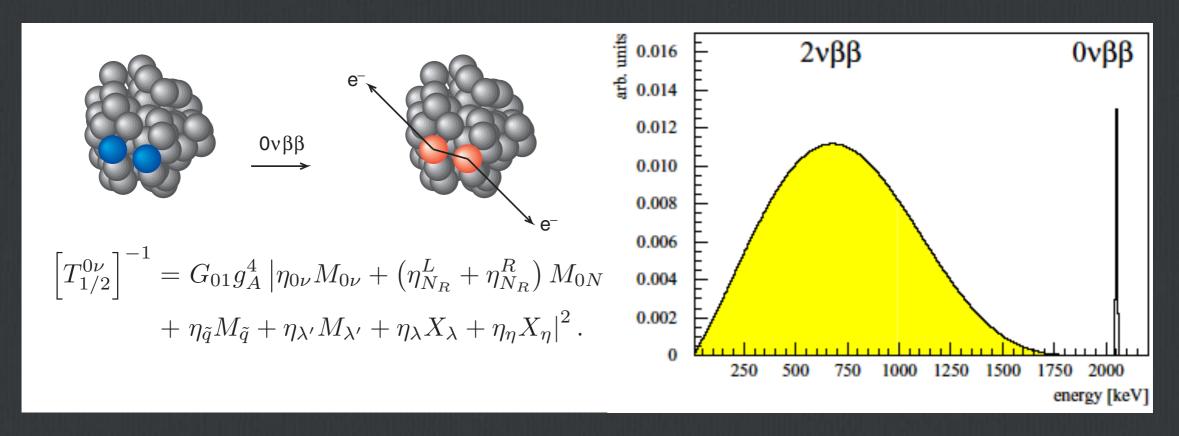
MEDEX'19


Matrix Elements for the Double beta decay Experiments Prague 27-31 May, 2019

May 27 - 31, 2019


Double beta decay NME from deformed QRPA with realistic forces

Dong-Liang Fang
Institute of Modern Physics, Chinese Academy of science
In collaboration with A. Faessler (U. Tuebingen) and F. Simkovic (Dubna)



Outline

- □ Background
- **☐** Formalism
- □ Results
- □ Conclusion

Nuclear pairing induced odd-odd instability

- \square Neutrinoless double beta decay (0νββ):
- ☐ Majorana mass, L-R Mixing

Isotope	$T_{1/2}(2\nu)$ (years)	$M^{2\nu}$
⁴⁸ Ca	$4.4^{+0.6}_{-0.5} \times 10^{19}$	$0.0238^{+0.0015}_{-0.0017}$
⁷⁶ Ge	$(1.5 \pm 0.1) \times 10^{21}$	$0.0716^{+0.0025}_{-0.0023}$
⁸² Se	$(0.92 \pm 0.07) \times 10^{20}$	$0.0503^{+0.0020}_{-0.0018}$
⁹⁶ Zr	$(2.3 \pm 0.2) \times 10^{19}$	$0.0491^{+0.0023}_{-0.0020}$
100 Mo	$(7.1 \pm 0.4) \times 10^{18}$	$0.1258^{+0.0037}_{-0.0034}$
100 Mo- 100 Ru(0_1^+)	$5.9^{+0.8}_{-0.6} \times 10^{20}$	$0.1017^{+0.0056}_{-0.0063}$
¹¹⁶ Cd	$(2.8 \pm 0.2) \times 10^{19}$	$0.0695^{+0.0025}_{-0.0024}$
¹²⁸ Te	$(1.9 \pm 0.4) \times 10^{24}$	$0.0249^{+0.0031}_{-0.0023}$
¹³⁰ Te	$(6.8^{+1.2}_{-1.1}) \times 10^{20}$	$0.0175^{+0.0016}_{-0.0014}$
¹⁵⁰ Nd	$(8.2 \pm 0.9) \times 10^{18}$	$0.0320^{+0.0018}_{-0.0017}$
$^{150}\text{Nd-}^{150}\text{Sm}(0_1^+)$	$1.33^{+0.45}_{-0.26} \times 10^{20}$	$0.0250^{+0.0029}_{-0.0034}$
^{238}U	$(2.0 \pm 0.6) \times 10^{21}$	$0.0271^{+0.0053}_{-0.0033}$
¹³⁰ Ba; ECEC(2ν)	$(2.2 \pm 0.5) \times 10^{21}$	$0.105^{+0.014}_{-0.010}$

A. S. Barabash, NPA935,52(2015)

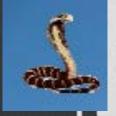
☐ Measured isotopes

Isotope	$T_{1/2}(2\nu)$ (years)	$M^{2\nu}$
⁴⁸ Ca	$4.4^{+0.6}_{-0.5} \times 10^{19}$	$0.0238^{+0.0015}_{-0.0017}$
⁷⁶ Ge	$(1.5 \pm 0.1) \times 10^{21}$	$0.0716^{+0.0025}_{-0.0023}$
⁸² Se	$(0.92 \pm 0.07) \times 10^{20}$	$0.0503^{+0.0020}_{-0.0018}$
⁹⁶ Zr	$(2.3 \pm 0.2) \times 10^{19}$	$0.0491^{+0.0023}_{-0.0020}$
100 Mo	$(7.1 \pm 0.4) \times 10^{18}$	$0.1258^{+0.0037}_{-0.0034}$
100 Mo- 100 Ru(0_1^+)	$5.9^{+0.8}_{-0.6} \times 10^{20}$	$0.1017^{+0.0056}_{-0.0063}$
¹¹⁶ Cd	$(2.8 \pm 0.2) \times 10^{19}$	$0.0695^{+0.0025}_{-0.0024}$
¹²⁸ Te	$(1.9 \pm 0.4) \times 10^{24}$	$0.0249^{+0.0031}_{-0.0023}$
¹³⁰ Te	$(6.8^{+1.2}_{-1.1}) \times 10^{20}$	$0.0175^{+0.0016}_{-0.0014}$
¹⁵⁰ Nd	$(8.2 \pm 0.9) \times 10^{18}$	$0.0320^{+0.0018}_{-0.0017}$
150 Nd- 150 Sm(0_1^+)	$1.33^{+0.45}_{-0.26} \times 10^{20}$	$0.0250^{+0.0029}_{-0.0034}$
^{238}U	$(2.0 \pm 0.6) \times 10^{21}$	$0.0271^{+0.0053}_{-0.0033}$
¹³⁰ Ba; ECEC(2ν)	$(2.2 \pm 0.5) \times 10^{21}$	$0.105^{+0.014}_{-0.010}$

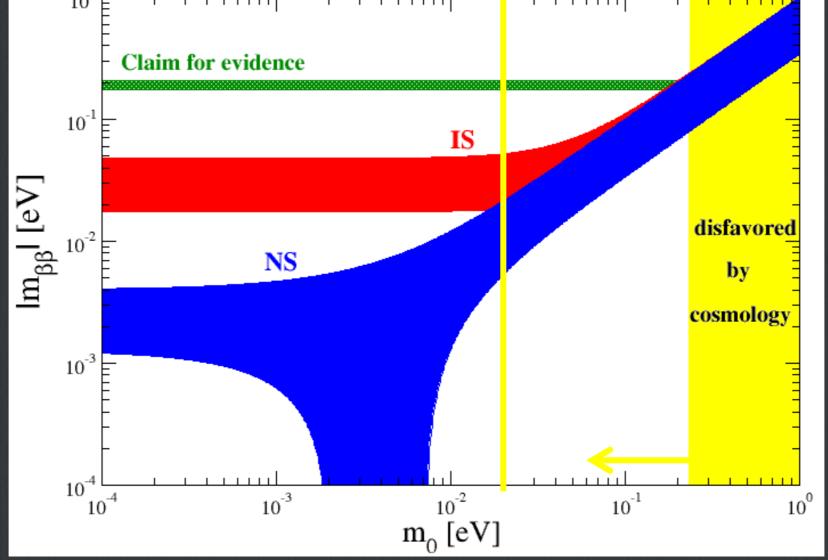
A. S. Barabash, NPA935,52(2015)

Measured isotopes

Isotope	$T_{1/2}(2v)$ (years)	$M^{2\nu}$
⁴⁸ Ca	$4.4^{+0.6}_{-0.5} \times 10^{19}$	$0.0238^{+0.0015}_{-0.0017}$
⁷⁶ Ge	$(1.5 \pm 0.1) \times 10^{21}$	$0.0716^{+0.0025}_{-0.0023}$
⁸² Se	$(0.92 \pm 0.07) \times 10^{20}$	$0.0503^{+0.0020}_{-0.0018}$
⁹⁶ Zr	$(2.3 \pm 0.2) \times 10^{19}$	$0.0491^{+0.0023}_{-0.0020}$
100 Mo	$(7.1 \pm 0.4) \times 10^{18}$	$0.1258^{+0.0037}_{-0.0034}$
100 Mo- 100 Ru(0_1^+)	$5.9^{+0.8}_{-0.6} \times 10^{20}$	$0.1017^{+0.0056}_{-0.0063}$
¹¹⁶ Cd	$(2.8 \pm 0.2) \times 10^{19}$	$0.0695^{+0.0025}_{-0.0024}$
¹²⁸ Te	$(1.9 \pm 0.4) \times 10^{24}$	$0.0249^{+0.0031}_{-0.0023}$
¹³⁰ Te	$(6.8^{+1.2}_{-1.1}) \times 10^{20}$	$0.0175^{+0.0016}_{-0.0014}$
¹⁵⁰ Nd	$(8.2 \pm 0.9) \times 10^{18}$	$0.0320^{+0.0018}_{-0.0017}$
$^{150}\text{Nd-}^{150}\text{Sm}(0_1^+)$	$1.33^{+0.45}_{-0.26} \times 10^{20}$	$0.0250^{+0.0029}_{-0.0034}$
^{238}U	$(2.0 \pm 0.6) \times 10^{21}$	$0.0271^{+0.0053}_{-0.0033}$
¹³⁰ Ba; ECEC(2ν)	$(2.2 \pm 0.5) \times 10^{21}$	$0.105^{+0.014}_{-0.010}$


A. S. Barabash, NPA935,52(2015)

☐ Measured isotopes


$$|m_{\beta\beta}^{(3 \nu)}| = |c_{12}^2 c_{13}^2 e^{2i\alpha_1} m_1 + c_{13}^2 s_{12}^2 e^{2i\alpha_2} m_2 + s_{13}^2 m_3|$$

Effective neutrino mass

$$m_{\beta\beta} =$$

$$U_{ej}^2 m_j$$

- ☐ Methods adopted for the calculations of NME
 - Closure without involvement of intermediate states
 - ☐ IBM, PHFB, DFT, CDFT,.....
 - □ Non-Closure with intermediated states
 - □ Shell Model
 - ☐ QRPA: realistic forces; Skyrme force;.....

- □ Introduction of deformed QRPA
 - \square Adiabatic approx. separate the intrinsic and rotation d.f.
 - Quasi-particle constructed on intrinsic frame
- □ Why deformation:
 - ☐ 150Nd lies in the heavily deformed rare earth region
 - ☐ This nucleus has the largest phase space factor

Kotila and Iachello, PRC85,034316

Nucleus	$G_{0\nu}^{(0)} (10^{-15} \text{ yr}^{-1})$	$G_{0\nu}^{(1)}$ (10 ⁻¹⁵ yr ⁻¹)	$Q_{\beta\beta}$ (MeV)
⁴⁸ Ca	24.81	-23.09	4.27226(404)
⁷⁶ Ge	2.363	-1.954	2.03904(16)
⁸² Se	10.16	-9.074	2.99512(201)
⁹⁶ Zr	20.58	-18.67	3.35037(289)
¹⁰⁰ Mo	15.92	14.25	3.03440(17)
¹¹⁰ Pd	4.815	-4.017	2.01785(64)
¹¹⁶ Cd	16.70	-14.83	2.81350(13)
¹²⁴ Sn	9.040	-7.765	2.28697(153)
¹²⁸ Te	0.5878	-0.3910	0.86587(131)
¹³⁰ Te	14.22	-12.45	2.52697(23)
¹³⁶ Xe	14.58	12.73	2.45783(37)
¹⁴⁸ Nd	1 0.10	-8.506	1.92875(192)
¹⁵⁰ Nd	63.03	-57.76	3.37138(20)
154 S m	3.015	-2.295	1.21503(125)
¹⁶⁰ Gd	9.559	-7.932	1.72969(126)
¹⁹⁸ Pt	7.556	-5.868	1.04717(311)
²³² Th	13.93	-10.95	0.84215(246)
²³⁸ U	33.61	28.13	1.14498(125)

☐ Recent results on phase space factor

Kotila and Iachello, PRC85,034316

Nucleus	$G_{0\nu}^{(0)} (10^{-15} \text{ yr}^{-1})$	$G_{0\nu}^{(1)} (10^{-15} \mathrm{yr}^{-1})$	$Q_{\beta\beta}$ (MeV)
Trucious	σ _{0ν} (το γι)	σ _{(ν} (10)1)	Spb (MC 4)
⁴⁸ Ca	24.81	-23.09	4.27226(404)
⁷⁶ Ge	2.363	-1.954	2.03904(16)
⁸² Se	10.16	-9.074	2.99512(201)
^{96}Zr	20.58	-18.67	3.35037(289)
100 Mo	15.92	14.25	3.03440(17)
¹¹⁰ Pd	4.815	-4.017	2.01785(64)
¹¹⁶ Cd	16.70	-14.83	2.81350(13)
124 S n	9.040	-7.765	2.28697(153)
¹²⁸ Te	0.5878	-0.3910	0.86587(131)
¹³⁰ Te	14.22	-12.45	2.52697(23)
¹³⁶ Xe	14.58	12.73	2.45783(37)
¹⁴⁸ Nd	10.10	-8.506	1.92875(192)
150 Nd	63.03	-57.76	3.37138(20)
¹⁵⁴ Sm	3.015	-2.295	1.21503(125)
160 Gd	9.559	-7.932	1.72969(126)
¹⁹⁸ Pt	7.556	-5.868	1.04717(311)
²³² Th	13.93	-10.95	0.84215(246)
^{238}U	33.61	28.13	1.14498(125)

☐ Recent results on phase space factor

 \Box Nuclear matrix elements for $2\nu\beta\beta$ under intrinsic frame

$$M_{\text{GT}}^{2\nu} = \sum_{K=0,\pm 1} \sum_{m_i m_f} \frac{\langle 0_f^+ | \bar{\beta}_K^- | K^+, m_f \rangle \langle K^+, m_f | K^+, m_i \rangle \langle K^+, m_i | \beta_K^- | 0_i^+ \rangle}{\bar{\omega}_{K, m_i m_f}}$$

 \Box NME for 0νββ

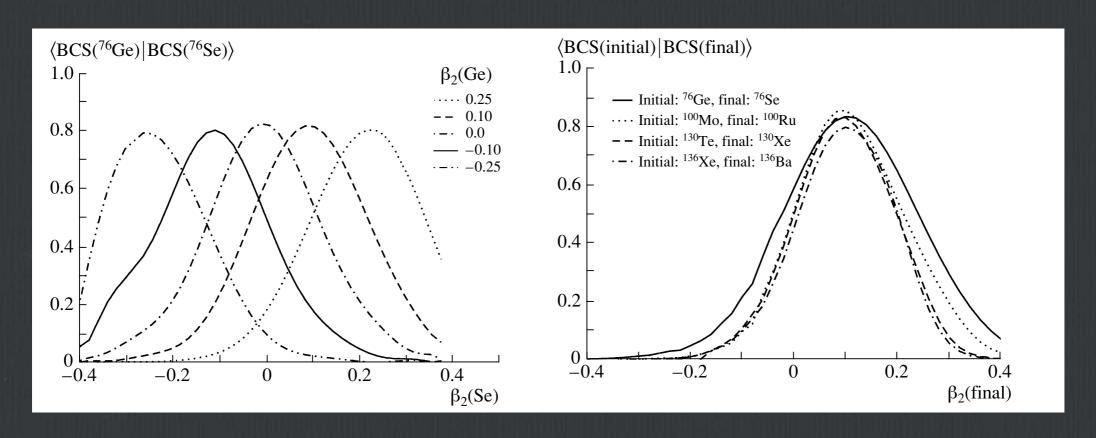
$$\begin{split} M^{0\nu}(K^{\pi}) &= \sum_{\substack{m_{i}, m_{f} \\ \eta_{p} \eta_{p'}}} \langle 0_{f}^{+} | c_{p}^{\dagger} c_{n} | K^{\pi} m_{f} \rangle \langle K^{\pi} m_{f} | K^{\pi} m_{i} \rangle \ \langle K^{\pi} m_{i} | c_{p'}^{\dagger} c_{n'} | 0_{i}^{+} \rangle \\ &\times \sum_{J} \sum_{\substack{\eta_{p} \eta_{p'} \\ \eta_{n} \eta_{n'}}} F_{p \eta_{p} n \eta_{n}}^{JK} F_{p' \eta_{p'} n' \eta_{n'}}^{JK} \sum_{\mathcal{J}} (-1)^{j_{n} + j_{p'} + J + \mathcal{J}} \hat{\mathcal{J}} \left\{ \begin{array}{c} j_{p} \ j_{n} \ J \\ j_{n'} \ j_{p'} \ \mathcal{J} \end{array} \right\} \langle p(1), p'(2); \mathcal{J} || \mathcal{O}_{\ell}(1, 2) || n(1), n'(2); \mathcal{J} \rangle \end{split}$$

□ Overlaps:

$$\langle K^{\pi} m_f | K^{\pi} m_i \rangle = \sum_{l_i l_f} \left[X_{l_f K^{\pi}}^{m_f} X_{l_i K^{\pi}}^{m_i} - Y_{l_f K^{\pi}}^{m_f} Y_{l_i K^{\pi}}^{m_i} \right] \mathcal{R}_{l_f l_i} \langle \text{BCS}_f | \text{BCS}_i \rangle$$

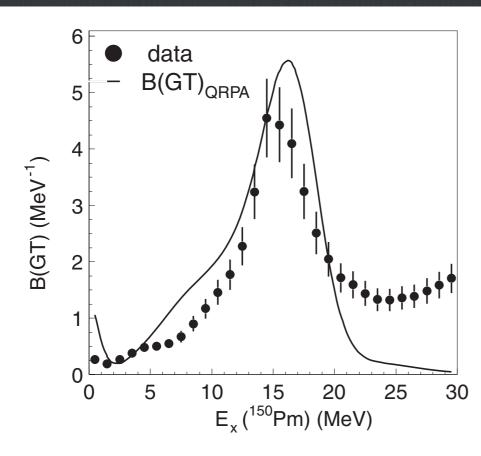
$$J^{\mu}(\vec{x}) = \sum_{n=1}^{A} \tau_{n}^{+} [g^{\mu 0}J^{0}(\vec{q}^{2}) + g^{\mu k}J_{n}^{k}(\vec{q}^{2})] \delta(\vec{x} - \vec{r}_{n})$$

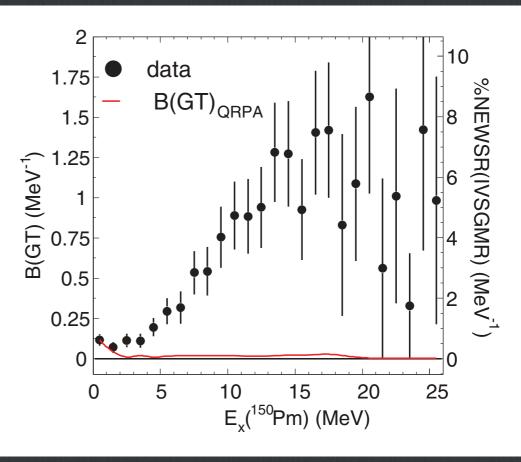
$$J^{0}(\vec{q}^{2}) = g_{V}(q^{2}), \ \vec{J}_{n}(\vec{q}^{2}) = g_{M}(\vec{q}^{2})i\frac{\sigma_{n} \times q}{2m_{p}} + g_{A}(\vec{q}^{2})\vec{\sigma} - g_{P}(\vec{q}^{2})\frac{q\sigma_{n} \cdot q}{2m_{p}}$$


$$M_{\text{type}}^{I} = \langle H_{\text{type-F}}^{I}(r_{12}) + H_{\text{type-GT}}^{I}(r_{12}) \sigma_{12} + H_{\text{type-T}}^{I}(r_{12}) S_{12} \rangle$$

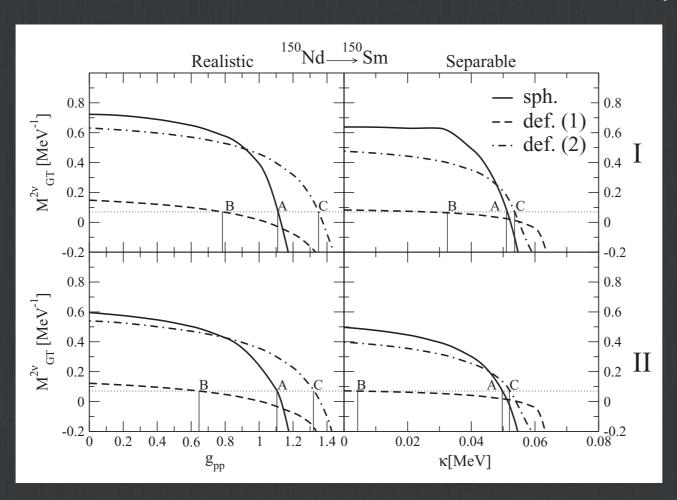
$$S_{12} = 3(\vec{\sigma}_1 \cdot \hat{\mathbf{r}}_{12})(\vec{\sigma}_2 \cdot \hat{\mathbf{r}}_{12}) - \sigma_{12}, \quad \sigma_{12} = \vec{\sigma}_1 \cdot \vec{\sigma}_2$$

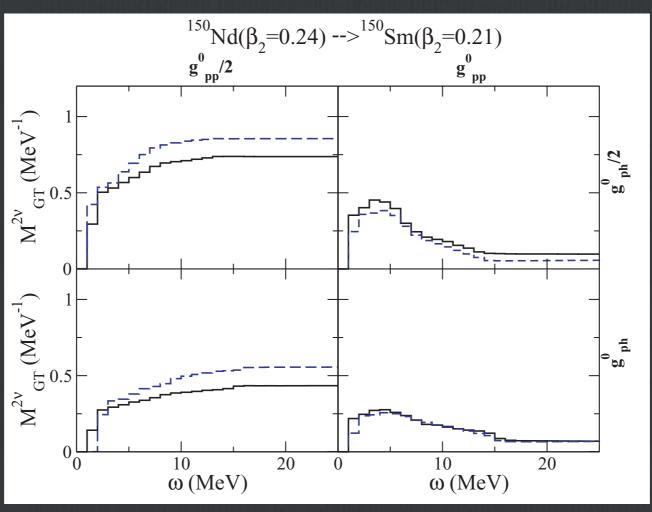
$$H_{\text{type-}K}^{\text{light}}(r_{12}) = \frac{2}{\pi g_A^2} \frac{R}{r_{12}} \int_0^\infty \frac{\sin(qr_{12})}{q + E_J^m - (E_{\text{g.s.}}^i + E_{\text{g.s.}}^f)/2} h_{\text{type-}K}(q^2) dq$$


$$H_{\text{type-}K}^{\text{heavy}}(r_{12}) = \frac{1}{m_p m_e} \frac{2}{\pi g_A^2} \frac{R}{r_{12}} \int_0^\infty \sin(q r_{12}) h_{\text{type-}K}(q^2) q dq$$

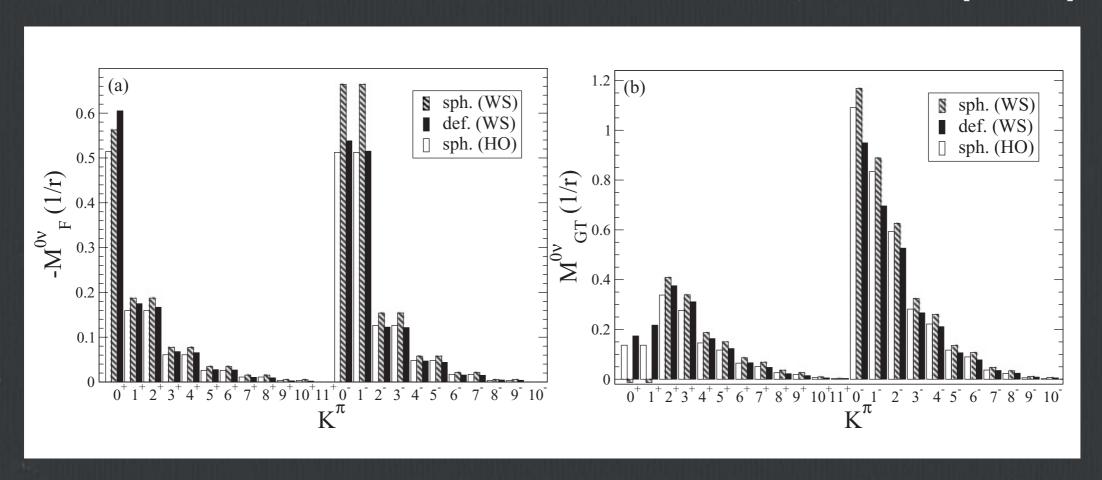

L. Pacerescu et al. Phys. Atom Nucl. 67,1210(2004)

□ BCS overlaps

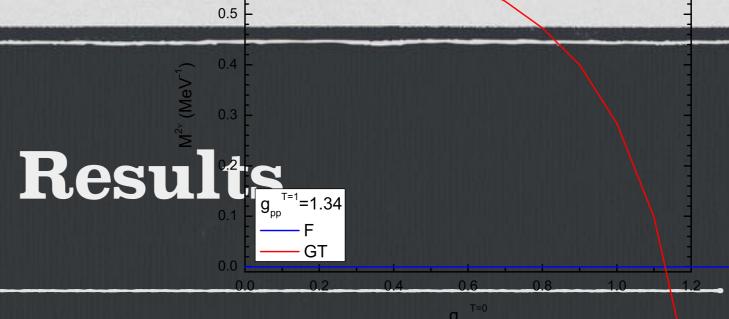

C. J. Guess et al. PRC83,064318(2011)


□ Validation of the theory

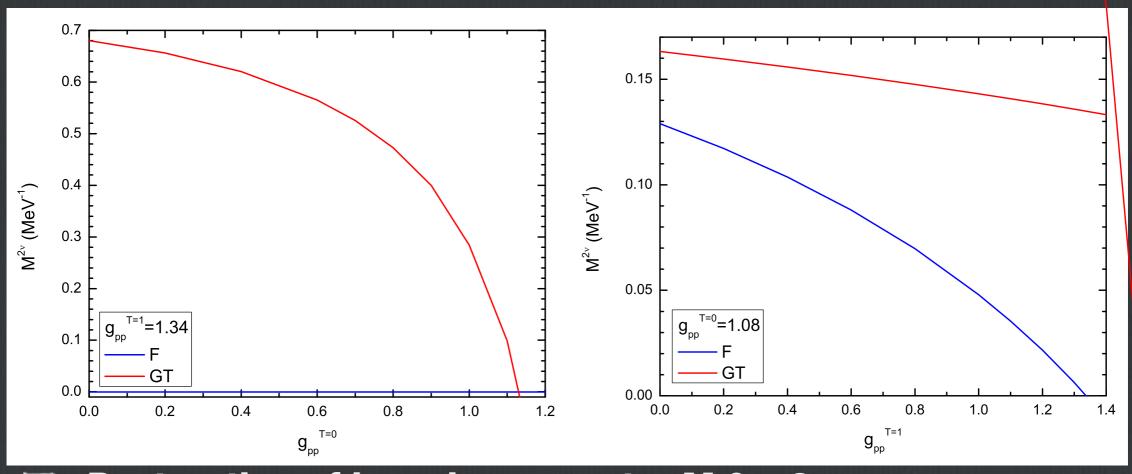
M.S. Yousef et. al. PRC79,014314(2009)


 \Box Dependance of NME for $2\nu\beta\beta$ on residual interactions

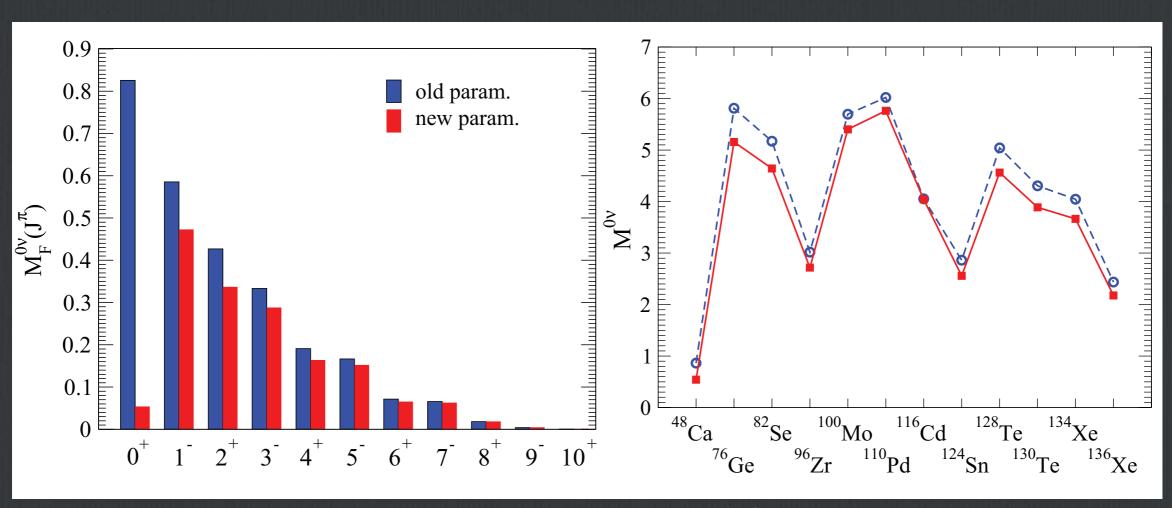
DLF et al. PRC81,037303(2010)



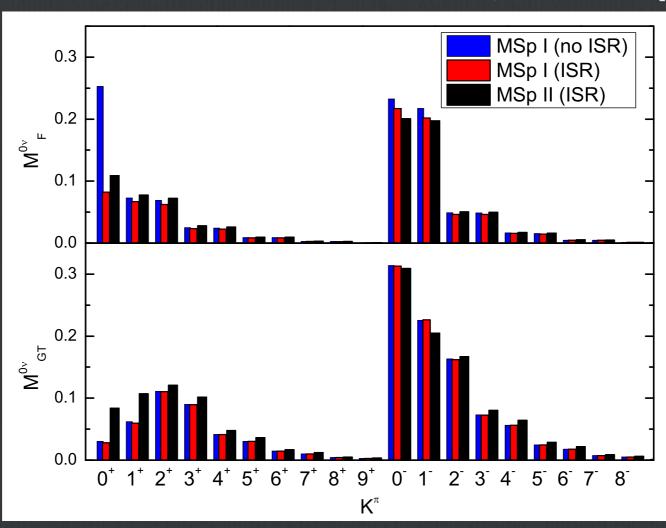
□ Lowlying states dominance


DLF et al. PRC83,034320(2011)

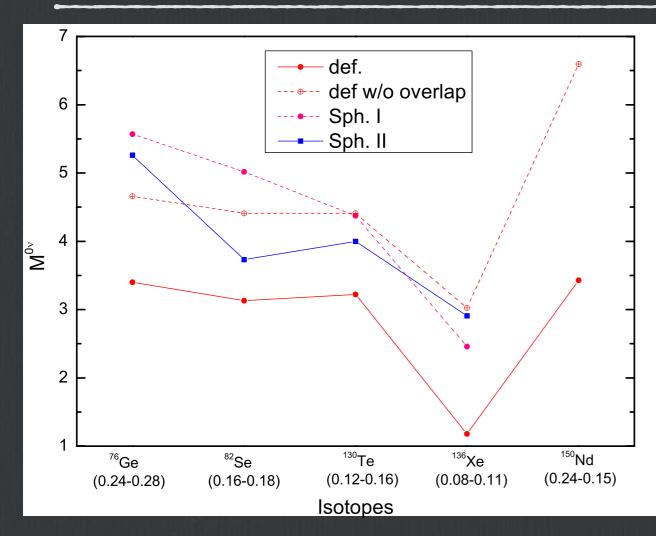
□ Comparison of results from different wave functions



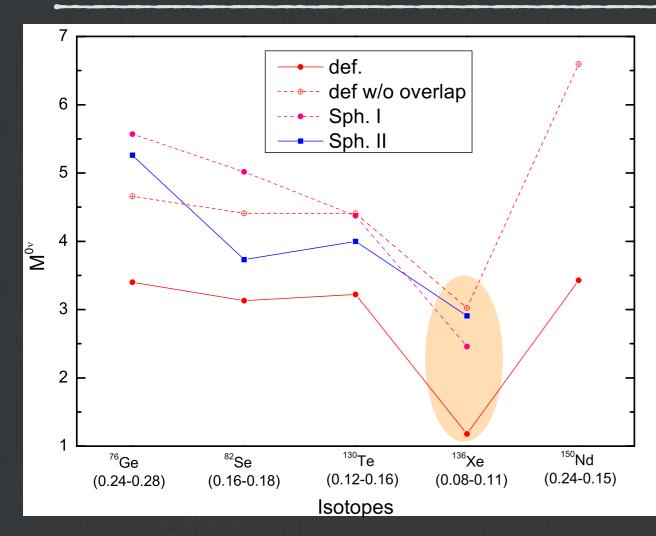
V. Rodin and A. Faessler PRC84,014322(2011)

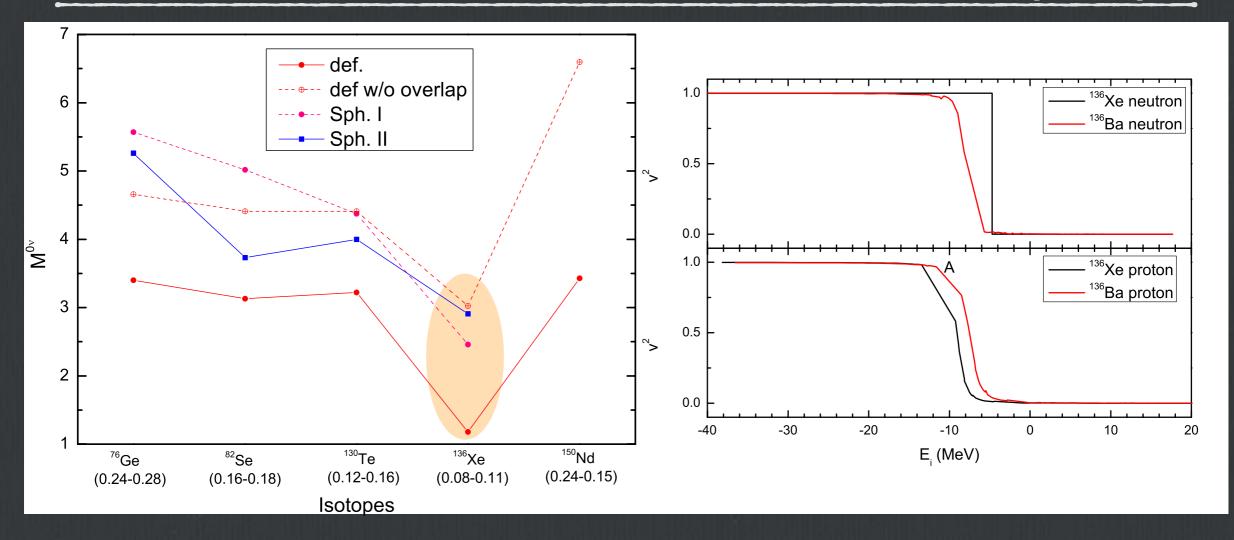

Restoration of isospin symmetry M_F²v=0

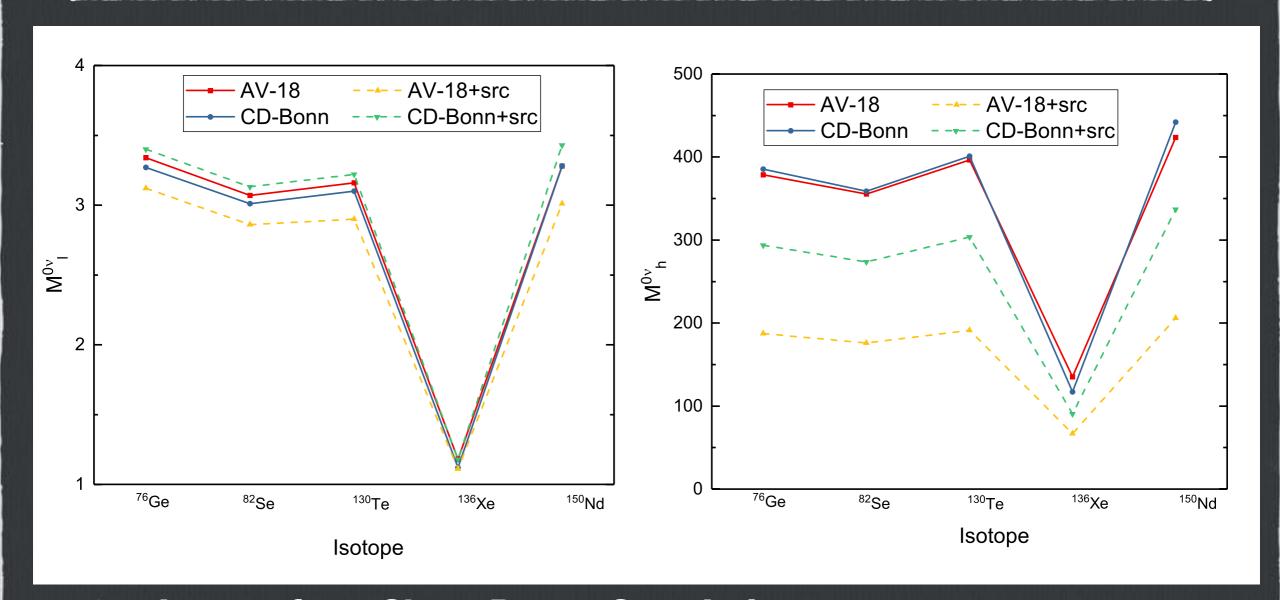
F. Simkovic et al. PRC87,045501(2013)

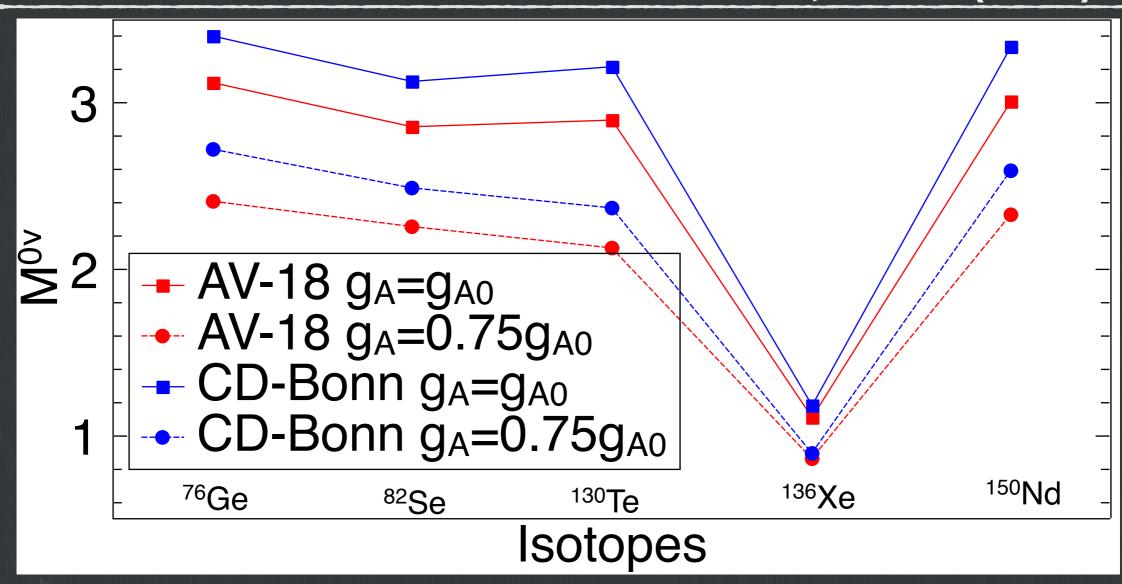


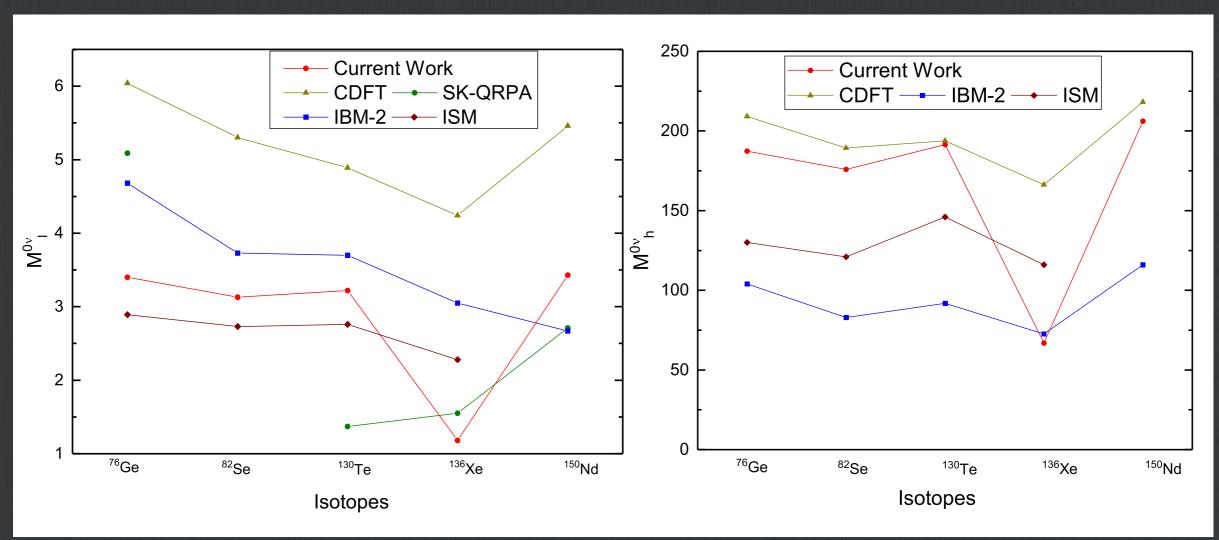
 \square Impact of Isospin restoration on 0νββ


DLF et al. PRC92,044301(2015)

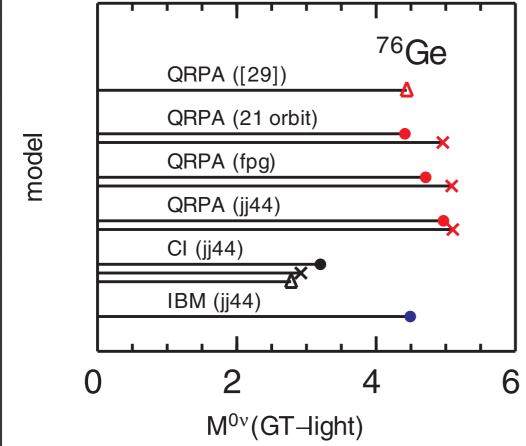

 \Box $0\nu\beta\beta$ matrix elements with isospin symmetry restoration

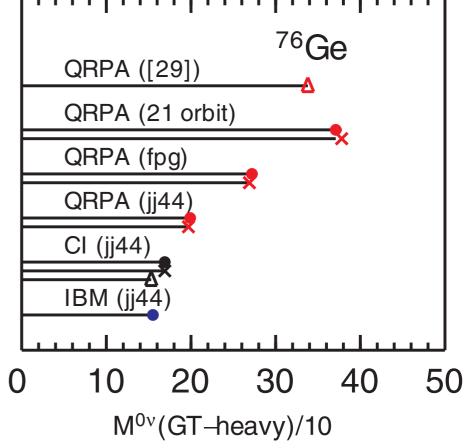

■ NME of double beta decay and role of deformation and overlap factors


■ NME of double beta decay and role of deformation and overlap factors

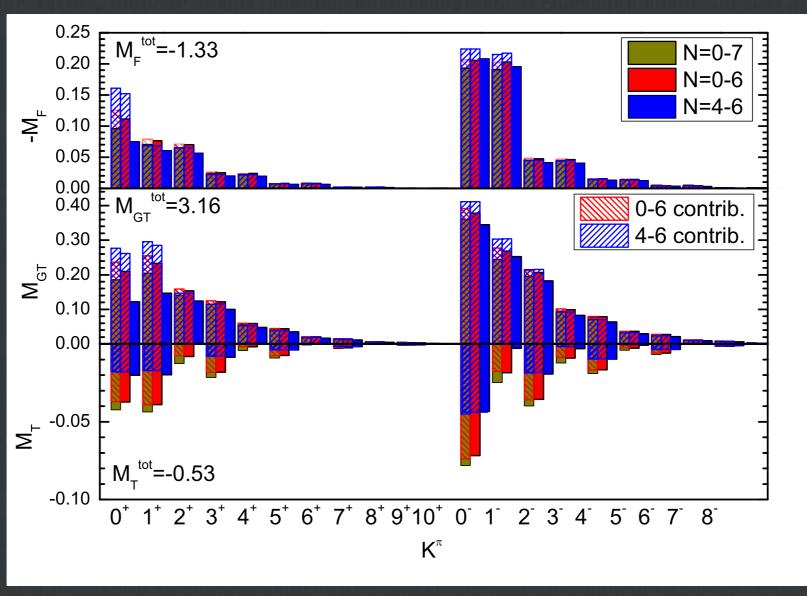

■ NME of double beta decay and role of deformation and overlap factors

☐ Impact from Short-Range Correlation

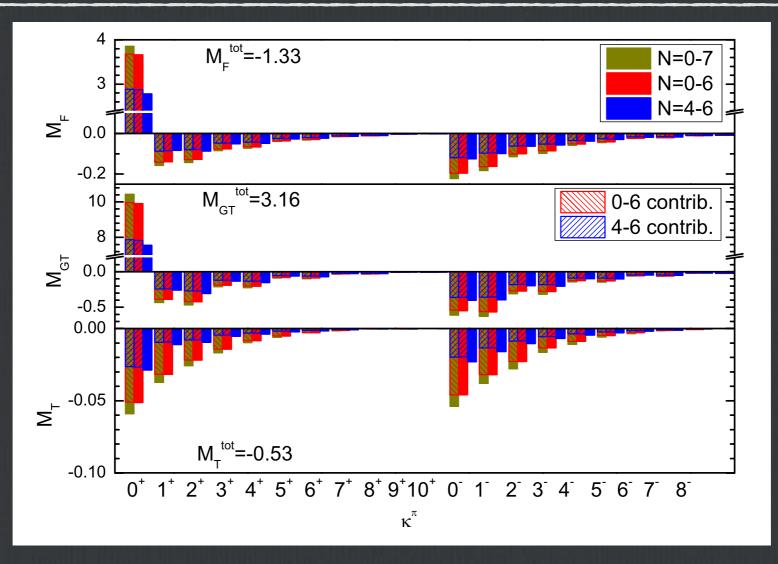

 \Box The quenching of g_A



Results from different models



model



How the deviations come out?

Contribution from different intermediate states

□ Contribution from different nucleon pairs

Conclusion

- □ We adopted deformed QRPA method with realistic force for the calculation of nuclear matrix elements for double beta decay
- □ The major effects of deformation comes from the BCS overlaps
- ☐ This correction will bring an about 30% reduction

Thanks