MEDEX＇19

Matrix Elements for the Double beta decay Experiments
Prague 27－31 May， 2019

Double beta decay NMI from deformed QRPA with realistic forces

Dong－Liang Fang

Institute of Modern Physics，Chinese Academy of science

In collaboration with A．Faessler（U．Tuebingen）and F．Simkovic（Dubna）

Outline

\square Background
\square Formalism
\square Results
\square Conclusion

Background

\square Nuclear pairing induced odd-odd instability

Background

\square Neutrinoless double beta decay (Ov $\beta \beta$):
\square Majorana mass, L-R Mixing

Background

Isotope	$T_{1 / 2}(2 v)($ years $)$	$M^{2 v}$
${ }^{48} \mathrm{Ca}$	$4.4_{-0.5}^{+0.6} \times 10^{19}$	$0.0238_{-0.0017}^{+0.0015}$
${ }^{76} \mathrm{Ge}$	$(1.5 \pm 0.1) \times 10^{21}$	$0.0716_{-0.0025}^{+0.0023}$
${ }^{82} \mathrm{Se}$	$(0.92 \pm 0.07) \times 10^{20}$	$0.0503_{-0.00018}^{+0.0020}$
${ }^{96} \mathrm{Zr}$	$(2.3 \pm 0.2) \times 10^{19}$	$0.0491_{-0.0023}^{+0.0020}$
${ }^{100} \mathrm{Mo}$	$(7.1 \pm 0.4) \times 10^{18}$	$0.1258_{-0.00034}^{+0.0037}$
${ }^{100} \mathrm{Mo}^{100} \mathrm{Ru}\left(0_{1}^{+}\right)$	$5.9_{-0.6}^{+0.8} \times 10^{20}$	$0.1017_{-0.00063}^{+0.0056}$
${ }^{116} \mathrm{Cd}$	$(2.8 \pm 0.2) \times 10^{19}$	$0.0695_{-0.0024}^{+0.0025}$
${ }^{128} \mathrm{Te}$	$(1.9 \pm 0.4) \times 10^{24}$	$0.0249_{-0.0023}^{+0.0031}$
${ }^{130} \mathrm{Te}$	$\left(6.8_{-1.1}^{+1.2}\right) \times 10^{20}$	$0.0175_{-0.00014}^{+0.0016}$
${ }^{150} \mathrm{Nd}$	$(8.2 \pm 0.9) \times 10^{18}$	$0.0320_{-0.00017}^{+0.0018}$
${ }^{150} \mathrm{Nd}-{ }^{150} \mathrm{Sm}\left(0_{1}^{+}\right)$	$1.33_{-0.26}^{+0.45} \times 10^{20}$	$0.0250_{-0.00034}^{+0.0029}$
${ }^{238} \mathrm{U}$	$(2.0 \pm 0.6) \times 10^{21}$	$0.0271_{-0.00033}^{+0.0053}$
${ }^{130} \mathrm{Ba} ; \mathrm{ECEC}(2 v)$	$(2.2 \pm 0.5) \times 10^{21}$	$0.105_{-0.010}^{+0.014}$

A. S. Barabash, NPA935,52(2015)

Measured isotopes

Background

Isotope	$T_{1 / 2}(2 v)($ years $)$	$M^{2 v}$
${ }^{48} \mathrm{Ca}$	$4.4_{-0.5}^{+0.6} \times 10^{19}$	$0.0238_{-0.0017}^{+0.0015}$
${ }^{76} \mathrm{Ge}$	$(1.5 \pm 0.1) \times 10^{21}$	$0.0716_{-0.0025}^{+0.0023}$
${ }^{82} \mathrm{Se}$	$(0.92 \pm 0.07) \times 10^{20}$	$0.0503_{-0.00018}^{+0.0020}$
${ }^{96} \mathrm{Zr}$	$(2.3 \pm 0.2) \times 10^{19}$	$0.0491_{-0.0023}^{+0.0020}$
${ }^{100} \mathrm{Mo}$	$(7.1 \pm 0.4) \times 10^{18}$	$0.1258_{-0.00034}^{+0.0037}$
${ }^{100} \mathrm{Mo}^{100} \mathrm{Ru}\left(0_{1}^{+}\right)$	$5.9_{-0.6}^{+0.8} \times 10^{20}$	$0.1017_{-0.00063}^{+0.0056}$
${ }^{116} \mathrm{Cd}$	$(2.8 \pm 0.2) \times 10^{19}$	$0.0695_{-0.0024}^{+0.0025}$
${ }^{128} \mathrm{Te}$	$(1.9 \pm 0.4) \times 10^{24}$	$0.0249_{-0.0023}^{+0.0031}$
${ }^{130} \mathrm{Te}$	$\left(6.8_{-1.1}^{+1.2}\right) \times 10^{20}$	$0.0175_{-0.00014}^{+0.0016}$
${ }^{150} \mathrm{Nd}$	$(8.2 \pm 0.9) \times 10^{18}$	$0.0320_{-0.00017}^{+0.0018}$
${ }^{150} \mathrm{Nd}-{ }^{150} \mathrm{Sm}\left(0_{1}^{+}\right)$	$1.33_{-0.26}^{+0.45} \times 10^{20}$	$0.0250_{-0.00034}^{+0.0029}$
${ }^{238} \mathrm{U}$	$(2.0 \pm 0.6) \times 10^{21}$	$0.0271_{-0.00033}^{+0.0053}$
${ }^{130} \mathrm{Ba} ; \mathrm{ECEC}(2 v)$	$(2.2 \pm 0.5) \times 10^{21}$	$0.105_{-0.010}^{+0.014}$

A. S. Barabash, NPA935,52(2015)

Measured isotopes

Background

Isotope	$T_{1 / 2}(2 v)($ years $)$	$M^{2 v}$
${ }^{48} \mathrm{Ca}$	$4.4_{-0.5}^{+0.6} \times 10^{19}$	$0.0238_{-0.0017}^{+0.0015}$
${ }^{76} \mathrm{Ge}$	$(1.5 \pm 0.1) \times 10^{21}$	$0.0716_{-0.00023}^{+0.0025}$
${ }^{82} \mathrm{Se}$	$(0.92 \pm 0.07) \times 10^{20}$	$0.0503_{-0.00018}^{+0.0020}$
${ }^{96} \mathrm{Zr}$	$(2.3 \pm 0.2) \times 10^{19}$	$0.0491_{-0.00020}^{+0.0023}$
${ }^{100} \mathrm{Mo}$	$(7.1 \pm 0.4) \times 10^{18}$	$0.1258_{-0.00034}^{+0.0037}$
${ }^{100} \mathrm{Mo}^{100} \mathrm{Ru}\left(0_{1}^{+}\right)$	$5.9_{-0.6}^{+0.8} \times 10^{20}$	$0.1017_{-0.00063}^{+0.0056}$
${ }^{116} \mathrm{Cd}$	$(2.8 \pm 0.2) \times 10^{19}$	$0.0695_{-0.0024}^{+0.0025}$
${ }^{128} \mathrm{Te}$	$(1.9 \pm 0.4) \times 10^{24}$	$0.0249_{-0.00023}^{+0.0031}$
${ }^{130} \mathrm{Te}$	$\left(6.8_{-1.1}^{+1.2}\right) \times 10^{20}$	$0.0175_{-0.00014}^{+0.0016}$
${ }^{150} \mathrm{Nd}$	$(8.2 \pm 0.9) \times 10^{18}$	$0.0320_{-0.00017}^{+0.0018}$
${ }^{150} \mathrm{Nd}-{ }^{150} \mathrm{Sm}\left(0_{1}^{+}\right)$	$1.33_{-0.26}^{+0.45} \times 10^{20}$	$0.0250_{-0.00034}^{+0.0029}$
${ }^{238} \mathrm{U}$	$(2.0 \pm 0.6) \times 10^{21}$	$0.0271_{-0.00033}^{+0.0053}$
${ }^{130} \mathrm{Ba} ; \mathrm{ECEC}(2 \nu)$	$(2.2 \pm 0.5) \times 10^{21}$	$0.105_{-0.010}^{+0.014}$

A. S. Barabash, NPA935,52(2015)

Measured isotopes

Background

Formalism

\square Methods adopted for the calculations of NME
\square Closure without involvement of intermediate states
\square IBM, PHFB, DFT, CDFT,......
\square Non-Closure with intermediated states
\square Shell Model
\square QRPA: realistic forces; Skyrme force;.......

Formalism

\square Introduction of deformed QRPA
\square Adiabatic approx. separate the intrinsic and rotation d.f.
\square Quasi-particle constructed on intrinsic frame
\square Why deformation:
\square 150Nd lies in the heavily deformed rare earth region
\square This nucleus has the largest phase space factor

Formalism

Kotila and lachello, PRC85,034316

Nucleus	$G_{0 v}^{(0)}\left(10^{-15} \mathrm{yr}^{-1}\right)$	$G_{0 \nu}^{(1)}\left(10^{-15} \mathrm{yr}^{-1}\right)$	$Q_{\beta B}(\mathrm{MeV})$
${ }^{18} \mathrm{Ca}$	24.81	-23.09	4.27226(404)
${ }^{76} \mathrm{Ge}$	2.363	-1.954	$2.03904(16)$
${ }^{82} \mathrm{Se}$	10.16	-9.074	$2.99512(201)$
${ }^{96} \mathrm{Zr}$	20.58	-18.67	$3.35037(289)$
${ }^{1010} \mathrm{Mo}$	15.92	14.25	$3.03440(17)$
${ }^{110} \mathrm{Pd}$	4.815	-4.017	$2.01785(64)$
${ }^{116} \mathrm{Cd}$	16.70	-14.83	$2.81350(13)$
${ }^{122} \mathrm{Sn}$	9.040	-7.765	$2.28697(153)$
${ }^{128} \mathrm{Te}$	0.5878	-0.3910	$0.86587(131)$
${ }^{130} \mathrm{Ie}$	14.22	-12.45	$2.52697(23)$
${ }^{136} \mathrm{Xe}$	14.58	12.73	$2.45783(37)$
${ }^{148} \mathrm{Nd}$	10.10	-8.506	1.92875 (192)
${ }^{156} \mathrm{Nd}$	63.03	-57.76	$3.37138(20)$
${ }^{154}$ Sill	3.015	-2.295	$1.21503(125)$
${ }^{160} \mathrm{Gd}$	9.559	-7.932	1.72969(126)
${ }^{198} \mathrm{Pt}$	7.556	-5.868	$1.04717(311)$
${ }^{232} \cdot{ }^{\text {2 }}$ Ih	13.93	-10.95	$0.84215(246)$
${ }^{238} \mathrm{U}$	33.61	28.13	1.14498 (125)

\square Recent results on phase space factor

Formalism

Kotila and lachello, PRC85,034316

Nucleus	$G_{0 v}^{(0)}\left(10^{-15} \mathrm{yr}^{-1}\right)$	$G_{0 v}^{(1)}\left(10^{-15} \mathrm{yr}^{-1}\right)$	$Q_{\beta B}(\mathrm{MeV})$
${ }^{18} \mathrm{Ca}$	24.81	-23.09	4.27226(404)
${ }^{76} \mathrm{Ge}$	2.363	-1.954	2.03904(16)
${ }^{82} \mathrm{Se}$	10.16	-9.074	$2.99512(201)$
${ }^{96} \mathrm{Zr}$	20.58	-18.67	$3.35037(289)$
${ }^{101} \mathrm{Mo}$	15.92	14.25	3.03440 (17)
${ }^{110} \mathrm{Pd}$	4.815	-4.017	$2.01785(64)$
${ }^{116} \mathrm{Cd}$	16.70	-14.83	$2.81350(13)$
${ }^{12}{ }^{2} \mathrm{Sn}$	9.040	-7.765	$2.28697(153)$
${ }^{128} \mathrm{Te}$	0.5878	-0.3910	0.86587 (131)
${ }^{130} \mathrm{Te}$	14.22	-12.45	$2.52697(23)$
${ }^{136} \mathrm{Xe}$	14.58	12.73	2.45783(37)
${ }^{148} \mathrm{Nd}$	10.10	-8.506	$1.92875(192)$
${ }^{156} \mathrm{Nd}$	63.03	-57.76	$3.37138(20)$
${ }^{151} \mathrm{Sill}$	3.015	-2.295	$1.21503(125)$
${ }^{160} \mathrm{Gd}$	9.559	-7.932	1.72969(126)
${ }^{198} \mathrm{Pt}$	7.556	-5.868	$1.04717(311)$
${ }^{232} \cdot{ }^{2} \mathrm{Ih}$	13.93	-10.95	$0.84215(246)$
${ }^{238} \mathrm{U}$	33.61	28.13	1.14498(125)

\square Recent results on phase space factor

Formalism

\square Nuclear matrix elements for $2 v \beta \beta$ under intrinsic frame

$$
M_{\mathrm{GT}}^{2 v}=\sum_{K=0, \pm 1} \sum_{m_{i} m_{f}} \frac{\left\langle 0_{f}^{+}\right| \bar{\beta}_{K}^{-}\left|K^{+}, m_{f}\right\rangle\left\langle K^{+}, m_{f} \mid K^{+}, m_{i}\right\rangle\left\langle K^{+}, m_{i}\right| \beta_{K}^{-}\left|0_{i}^{+}\right\rangle}{\bar{\omega}_{K, m_{i} m_{f}}}
$$

\square NME for $0 v \beta \beta$

$$
\begin{aligned}
& M^{0 \nu}\left(K^{\pi}\right)=\sum_{m_{i}, m_{f}}\left\langle 0_{f}^{+}\right| c_{p}^{\dagger} c_{n}\left|K^{\pi} m_{f}\right\rangle\left\langle K^{\pi} m_{f} \mid K^{\pi} m_{i}\right\rangle\left\langle K^{\pi} m_{i}\right| c_{p^{\prime}}^{\dagger}, c_{n^{\prime}}\left|0_{i}^{+}\right\rangle \\
& \times \sum_{J} \sum_{\substack{\eta_{n} \eta_{p^{\prime}} \\
n_{p} \eta_{\prime^{\prime}}}} F_{p \eta_{p} \eta_{n}}^{J K} F_{p^{\prime} \eta_{p} n^{\prime} n_{n} \eta_{n}}^{J K} \sum_{\mathcal{J}}(-1)^{j_{n}+j_{p^{\prime}}+J+\mathcal{J}} \hat{\mathcal{J}}\left\{\begin{array}{l}
j_{p} j_{n} \\
j_{n^{\prime}} j_{p^{\prime}} \\
J
\end{array}\right\}\left\langle p(1), p^{\prime}(2) ; \mathcal{J}\left\|\mathcal{O}_{\ell}(1,2)\right\| n(1), n^{\prime}(2) ; \mathcal{J}\right\rangle
\end{aligned}
$$

\square Overlaps:

$$
\left\langle K^{\pi} m_{f} \mid K^{\pi} m_{i}\right\rangle=\sum_{l_{l}, l_{j}}\left[X_{l_{f} K^{\pi}}^{m_{j}} X_{l_{i} K^{\pi}}^{m_{i}}-Y_{l_{f} K^{K}}^{m_{j}} Y_{l, K^{\pi}}^{m_{i}}\right] \mathcal{R}_{l_{l i} l_{i}}\left\langle\mathrm{BCS}_{f} \mid \mathrm{BCS}_{i}\right\rangle
$$

Formalism

\square Induced weak hadron Current

$$
J^{\mu}(\vec{x})=\sum_{n=1}^{A} \tau_{n}^{+}\left[g^{\mu 0} J^{0}\left(\vec{q}^{2}\right)+g^{\mu k} J_{n}^{k}\left(\vec{q}^{2}\right)\right] \delta\left(\vec{x}-\vec{r}_{n}\right)
$$

\square With

$$
J^{0}\left(\vec{q}^{2}\right)=g_{V}\left(q^{2}\right), \quad \vec{J}_{n}\left(\vec{q}^{2}\right)=g_{M}\left(\vec{q}^{2}\right) i \frac{\sigma_{n} \times q}{2 m_{p}}+g_{A}\left(\vec{q}^{2}\right) \vec{\sigma}-g_{P}\left(\vec{q}^{2}\right) \frac{q \sigma_{n} \cdot q}{2 m_{p}}
$$

\square Therefore

$$
M_{\mathrm{type}}^{I}=\left\langle H_{\mathrm{type}-\mathrm{F}}^{I}\left(r_{12}\right)+H_{\mathrm{type}-\mathrm{GT}}^{I}\left(r_{12}\right) \sigma_{12}+H_{\mathrm{type}-\mathrm{T}}^{I}\left(r_{12}\right) S_{12}\right\rangle
$$

\square Where

$$
S_{12}=3\left(\vec{\sigma}_{1} \cdot \hat{\mathbf{r}}_{12}\right)\left(\vec{\sigma}_{2} \cdot \hat{\mathbf{r}}_{12}\right)-\sigma_{12}, \quad \sigma_{12}=\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}
$$

\square And

$$
\begin{aligned}
& H_{\text {type- } K}^{\text {light }}\left(r_{12}\right)=\frac{2}{\pi g_{A}^{2}} \frac{R}{r_{12}} \int_{0}^{\infty} \frac{\sin \left(q r_{12}\right)}{q+E_{J}^{m}-\left(E_{\text {g.s. }}^{i}+E_{\text {g.s. }}^{f}\right) / 2} h_{\text {type }-K}\left(q^{2}\right) d q \\
& H_{\text {type- } K}^{\text {heavy }}\left(r_{12}\right)=\frac{1}{m_{p} m_{e}} \frac{2}{\pi g_{A}^{2}} \frac{R}{r_{12}} \int_{0}^{\infty} \sin \left(q r_{12}\right) h_{\text {type- } K}\left(q^{2}\right) q d q
\end{aligned}
$$

Results

L. Pacerescu et al. Phys. Atom Nucl. 67,1210(2004)

\square BCS overlaps

Results

C. J. Guess et al. PRC83,064318(2011)

\square Validation of the theory

Results

M.S.Yousef et. al. PRC79,014314(2009)

\square Dependance of NME for $2 v \beta \beta$ on residual interactions

Results

DLF et al. PRC81,037303(2010)

\square Lowlying states dominance

Results

DLF et al. PRC83,034320(2011)

\square Comparison of results from different wave functions

Results

V. Rodin and A. Faessler PRC84,014322(2011)

\square Restoration of isospin symmetry $M_{F}{ }^{2 v}=0$

Results

F. Simkovic et al. PRC87,045501 (2013)

\square Impact of Isospin restoration on $0 \mathrm{v} \beta \beta$

Results

DLF et al. PRG92,044301(2015)

$\square 0 v \beta \beta$ matrix elements with isospin symmetry restoration

Results DLF et al. PRC97,045503(2018)

\square NME of double beta decay and role of deformation and overlap factors

Results DLF et al. PRG97,045503(2018)

\square NME of double beta decay and role of deformation and overlap factors

Results
 DLF et al. PRC97,045503(2018)

\square NME of double beta decay and role of deformation and overlap factors

Results

DLF et al. PRC97,045503(2018)

\square Impact from Short-Range Correlation

Results

 DLF et al. PRG97,045503(2018)
\square The quenching of g_{A}

Results
 DLF et al. PRC97,045503(2018)

\square Results from different models

Results

B.A. Brown et. al. PRC92.041301(2015)

\square How the deviations come out?

Results

DLF et al. PRC97,045503(2018)

\square
Contribution from different intermediate states

Results

DLF et al. PRC97,045503(2018)

\square Contribution from different nucleon pairs

Conclusion

\square We adopted deformed QRPA method with realistic force for the calculation of nuclear matrix elements for double beta decay
\square The major effects of deformation comes from the BCS overlaps
\square This correction will bring an about 30% reduction

Thanks

