

(More than) Exotic 0νββ Decay with Majoron-like Emission

Frank Deppisch f.deppisch@ucl.ac.uk University College London

with Ricardo Cepedello, Lorena González, Chandan Hati, Martin Hirsch

Phys.Rev.Lett. 122 (2019) 181801

MEDEX'19 | Prague | 27-31/05/2019

Dirac vs Majorana

- Origin of neutrino masses beyond the Standard Model
- Two possibilities to define neutrino mass

Dirac mass analogous to other fermions but with ${m_{\nu}}/{\Lambda_{EW}} \approx 10^{-12}$ couplings to Higgs

- Majorana mass, using only a left-handed neutrino
- → Lepton Number Violation

Beta Decays and v Nature

Single beta decay

 $(A,Z) \rightarrow (A,Z+1) + e^- + \bar{\nu}_e$

- Tritium decay, KATRIN: $m_etapprox 0.2~{
 m eV}$
- Project 8: Atomic Tritium + Cyclotron Radiation Spectroscopy: $m_{eta} pprox 0.05 \, \mathrm{eV}$
- Allowed double beta $(2\nu\beta\beta)$ decay $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$
- Neutrinoless double beta $(0\nu\beta\beta)$ decay $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$
 - Violation of lepton number
 - Mediated by Majorana neutrinos
- Majoron assisted double beta $(0\nu\beta\beta J)$ decay
 - Missing energy \rightarrow lepton number violated?

> Emission of one or more neutral bosons

- Majoron model of neutrino mass generation
- "Majoron-like" boson *J* with coupling to v, e.g. $g_{ij}\bar{v}_i\gamma_5v_jJ$

Bamert, Burgess, Mohapatra '95

- Emission of one or more neutral bosons
 - Majoron model of neutrino mass generation
 - "Majoron-like" boson *J* with coupling to v, e.g. $g_{ij} \bar{v}_i \gamma_5 v_j J$
 - Light scalar associated with Weinberg–like operator (Blum, Nir, Shavit, Phys. Lett. B785 (2018) 354)

$$\mathcal{L}_{d=6} = -\frac{\mathcal{Y}_{\alpha\beta}}{\Lambda^2}\phi(HL_{\alpha})(HL_{\beta})$$

 Extensions with derivative couplings or two-Majoron emission

Bamert, Burgess, Mohapatra '95

Standard Majoron classes

Model	n	Mode	Goldstone	L	$T_{1/2}^{0\nu\chi}$	$\mathcal{M}^{0 u\chi}$	$G^{0 u\chi}$	$\langle g angle$
			boson		$[10^{23} yr]$		$[yr^{-1}]$	
IB	1	χ	no	0	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
IC	1	χ	yes	0	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
ID	3	$\chi\chi$	no	0	> 0.8	$10^{-3\pm1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IE	3	$\chi\chi$	yes	0	> 0.8	$10^{-3\pm 1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IF	2	χ	bulk field	0	> 1.8	_	_	_
IIB	1	χ	no	-2	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
IIC	3	$\frac{1}{\chi}$	yes	-2	> 0.8	0.16	$2.07 \cdot 10^{-19}$	$< 4.7 \cdot 10^{-2}$
IID	3	$\chi\chi$	no	-1	> 0.8	$10^{-3\pm1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IIE	7	$\chi\chi$	yes	-1	> 0.3	$10^{-3\pm1}$	$1.21 \cdot 10^{-18}$	$< 2.2^{+4.9}_{-1.4}$
IIF	3	χ	gauge boson	-2	> 0.8	0.16	$2.07 \cdot 10^{-19}$	$< 4.7 \cdot 10^{-2}$

GERDA, Eur. Phys. J. C75 (2015) 9, 416

- Standard Majoron classes
- Different electron energy distribution

Frank Deppisch | $0\nu\beta\beta$ Decay with Majoron-like Emission | 28/05/2019

Astrophysical Effects

If massive, Majoron can be Dark Matter

• Singlet Majoron Model (Garcia-Cely, Heeck, JHEP 05 (2017)102)

Strong constraints from Supernovae

• Effective RH lepton currents with massless scalar ϕ

$$\mathcal{L}_{0\nu\beta\beta\phi} = \frac{G_F \cos\theta_C}{\sqrt{2}} \left(j_L^{\mu} J_{L\mu} + \frac{\epsilon_{RL}^{\phi}}{m_p} j_R^{\mu} J_{L\mu} \phi + \frac{\epsilon_{RR}^{\phi}}{m_p} j_R^{\mu} J_{R\mu} \phi \right) + \text{h.c.}$$

• Giving rise to long-range contribution to $0\nu\beta\beta\phi$ decay

$$\mathcal{M} = \epsilon_{RX}^{\phi} \frac{(G_F \cos \theta_C)^2}{\sqrt{2}m_p} \sum_N \int d^3x d^3y \int \frac{d^3q}{2\pi^2 \omega} \phi(\mathbf{y}) e^{i\mathbf{q}(\mathbf{x}-\mathbf{y})} \\ \times \left\{ \left[\frac{J_{LX}^{\rho\sigma}(\mathbf{x},\mathbf{y}) u_{\rho\sigma}^L(E_1\mathbf{x},E_2\mathbf{y})}{\omega + \mu_N - \frac{1}{2}(E_1 - E_2 - E_{\phi})} - \frac{J_{XL}^{\rho\sigma}(\mathbf{x},\mathbf{y}) u_{\rho\sigma}^R(E_1\mathbf{x},E_2\mathbf{y})}{\omega + \mu_N - \frac{1}{2}(E_1 - E_2 + E_{\phi})} \right] - \left[E_1 \leftrightarrow E_2 \right] \right\}$$

- No suppression with ν mass
- Calculation follows long-range
 η and λ 0νββ modes
 Doi, Kotani, Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1

10 / 17

• Effective RH lepton currents with massless scalar ϕ

$$\mathcal{L}_{0\nu\beta\beta\phi} = \frac{G_F \cos\theta_C}{\sqrt{2}} \left(j_L^{\mu} J_{L\mu} + \frac{\epsilon_{RL}^{\phi}}{m_p} j_R^{\mu} J_{L\mu} \phi + \frac{\epsilon_{RR}^{\phi}}{m_p} j_R^{\mu} J_{R\mu} \phi \right) + \text{h.c.}$$

Non-standard total and single electron energy distributions

11 / 17

Average Angular Correlation

Frank Deppisch | $0\nu\beta\beta$ Decay with Majoron-like Emission | 28/05/2019

 $d\cos\theta$

Sensitivity (massless ϕ , recasting single Majoron searches)

Isotope	$T_{1/2}$ [y]	$ \epsilon^{\phi}_{RL} $	$ \epsilon^{\phi}_{RR} $
82 Se	3.7×10^{22} [14]	4.1×10^{-4}	4.6×10^{-2}
¹³⁶ Xe	2.6×10^{24} [13]	1.1×10^{-4}	1.1×10^{-2}
82 Se	$1.0 imes 10^{24}$	$8.0 imes 10^{-5}$	8.8×10^{-3}
¹³⁶ Xe	1.0×10^{25}	$5.7 imes 10^{-5}$	$5.8 imes 10^{-3}$

Standard long-range NMEs

12 / 17

Isotope	$Q_{\beta\beta}$ [MeV]	M_{GT}	χ_F	$\chi_{GT\omega}$	$\chi_{F\omega}$	χ'_{GT}	χ'_F	χ_T	χ_R	χ_P
82 Se	2.99	2.993	-0.134	0.947	-0.131	1.003	-0.103	0.004	1.086	0.430
$^{136}\mathrm{Xe}$	2.46	1.770	-0.158	0.908	-0.149	1.092	-0.167	-0.031	0.955	0.256

Horoi, Neacsu, Phys. Rev. D93 (2016) 113014 Caurier et al., Phys. Rev. Lett. 77 (1996) 1954, Eur. Phys. J. A36 (2008) 195

Sensitivity modification for massive ϕ

UV Model: LR Symmetry

Extended Gauge Symmetry

 $G_{LR} = SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$

- Minimal LR model: X = B L
- We consider $X \neq B L$ broken but B - L conserved
- Dirac neutrinos (and charged SM fermions) via Dirac seesaw via heavy, vector-like fermions (Bolton, FFD, Hati, arXiv:1902.05802)

Field	$SU(2)_L$	$SU(2)_R$	B-L	ζ	X	$SU(3)_C$
q_L	2	1	1/3	0	1/3	3
q_R	1	2	1/3	0	1/3	3
ℓ_L	2	1	-1	0	-1	1
ℓ_R	1	2	-1	0	-1	1
$U_{L,R}$	1	1	1/3	+1	4/3	3
$D_{L,R}$	1	1	1/3	-1	-2/3	3
$E_{L,R}$	1	1	-1	-1	-2	1
$N_{L,R}$	1	1	-1	+1	0	1
χ_L	2	1	0	+1	1	1
χ_R	1	2	0	+1	1	1
ϕ	1	1	2	-2	0	1

UV Model: LR Symmetry

UV Diagram

• Sensitivity from ϵ_{RL}^{ϕ}

15 / 17

$$\frac{T_{1/2}^{\text{Xe}}}{10^{25} \text{ y}} \approx \left(\frac{1.4 \times 10^{-4}}{g_R^2 \kappa y_N y_\nu}\right)^2 \left(\frac{m_{W_R}}{25 \text{ TeV}}\right)^4 \left(\frac{m_N}{100 \text{ MeV}}\right)^4$$

UV Model: Leptoquarks

- Add heavy scalar leptoquarks $S_1(3,2,1/6)$, $S_2(3^*,1,1/3)$
 - Effective operator at tree level
 - Lepton number conserved if $L(S_1) = L(S_2) = -1, L(\phi) = -2$

• LNV and Majorana neutrino mass at two-loop if $\langle \phi \rangle \neq 0$

16 / 17

Conclusion

Neutrinos much lighter than other fermions

- Dirac or Majorana? Lepton Number Violation?
- Natural suppression of charged LFV?
- Determination of absolute mass scale

• $0\nu\beta\beta$ is crucial probe for BSM physics

- Standard interpretation: New Physics near GUT scale breaking lepton number
- Important to look for alternative scenarios
 - If missing energy, lepton number may not be broken

Neutrino mass may be associated with exotic light particles

Majoron emission with RH currents

- Example of novel decay mode
- Other possibilities?