$0 \nu \beta \beta$ decay:

Beyond the mass mechanism

$$
(\mathrm{v} .19 .5)
$$

Martin Hirsch

Instituto de Física Corpuscular - CSIC
Universidad Valencia, Spain
http://www.astroparticles.es/
I. Introduction

II. Run and Freeze

$\mathcal{I I I}$. Long-range $0 \nu \beta \beta$ reconsidered

$\mathcal{I V}$. Conclusions

I.

Introduction

Black box!

Experimentalist observes:

Express half-live as:

$$
\begin{aligned}
{\left[T_{1 / 2}^{0 \nu \beta \beta}\right]^{-1}=} & G_{0 \nu}\left|\epsilon_{i}\right|^{2}\left|M_{i}^{0 \nu \beta \beta}\right|^{2} \\
& G_{0 \nu} \text { - phase space }
\end{aligned}
$$ $M_{i}^{0 \nu \beta \beta}$ - nuclear matrix element ϵ_{i} - particle physics

Many, many possible contributions!

Note:
Factorization requires no new physics with $\Lambda \simeq p_{F}$

$0 \nu \beta \beta$ decay: Decomposition

Amplitude for $(Z, A) \rightarrow(Z \pm 2, A)+e^{\mp} e^{\mp}$ can be divided into:

(a)

Mass mechanism

(b)
"long-range"

(c)
"short-range"

Higher order:

(d)

十

Run and freeze

PRD97 (2018) 115005 and PRD93 (2016) 013017

QCD corrections

Consider any short-range operator. At tree-level:

QCD corrections

Consider any short-range operator. At tree-level:

Heavy particles integrated out at scale Λ :
$\Lambda \simeq g_{e f f}^{4 / 5}(2-7) \mathrm{TeV}$

QCD corrections

Consider any short-range operator. At tree-level:

Heavy particles integrated out at scale Λ :

$$
\Lambda \simeq g_{e f f}^{4 / 5}(2-7) \mathrm{TeV}
$$

\Rightarrow Double beta decay is a low-energy process. Energy scale:

$$
p_{F} \simeq 100 \mathrm{MeV}
$$

\Rightarrow Need to run operator from $\Lambda \simeq \mathrm{TeV}$ to $\mu \simeq 10^{-4} \mathrm{TeV}$

QCD corrections

At tree-level:

Add gluon exchange diagrams
Naive estimate is:
$\alpha_{S} /(4 \pi) \times \ln (\Lambda / \mu) \simeq(20-30) \%$

QCD corrections

Running of α_{S}

Consider the running of α_{S}, usually stop running at $\sim 1 \mathrm{GeV}$:

At 1-loop level:

$$
\alpha_{S}\left(Q^{2}\right) \simeq \frac{\alpha_{S}\left(m_{Z}\right)}{1-\beta \frac{\alpha_{S}\left(m_{Z}\right)}{2 \pi} \log \left(m_{Z} / Q\right)}
$$

Experimental input: $\alpha_{S}\left(m_{Z}\right) \simeq 0.118$

Running of α_{S}

Consider the running of α_{S}, usually stop running at $\sim 1 \mathrm{GeV}$:

$$
\begin{aligned}
& \quad 0 \nu \beta \beta \Rightarrow 0 \nu \beta \beta\left(Q^{2}\right) \\
& \text { with: } \\
& Q \simeq(0.1-0.2) \mathrm{GeV} \\
& \quad \text { What happens } \\
& \quad \text { below } 1 \mathrm{GeV} \text { ? }
\end{aligned}
$$

At 1-loop level:

$$
\alpha_{S}\left(Q^{2}\right) \simeq \frac{\alpha_{S}\left(m_{Z}\right)}{1-\beta \frac{\alpha_{S}\left(m_{Z}\right)}{2 \pi} \log \left(m_{Z} / Q\right)}
$$

Experimental input: $\alpha_{S}\left(m_{Z}\right) \simeq 0.118$

Running of α_{S}

Consider the running of α_{S} :

At 1-loop level:

$$
\alpha_{S}\left(Q^{2}\right) \simeq \frac{\alpha_{S}\left(m_{Z}\right)}{1-\beta \frac{\alpha_{S}\left(m_{Z}\right)}{2 \pi} \log \left(m_{Z} / Q\right)}
$$

"Integrate out" quark flavours at their mass: β changes

Running of α_{S}

Consider the running of α_{S} :

> Perturbative $\alpha_{S}\left(Q^{2}\right)$ diverges
> for $Q^{2} \rightarrow 0$

At 1-loop level:

$$
\alpha_{S}\left(Q^{2}\right) \simeq \frac{\alpha_{S}\left(m_{Z}\right)}{1-\beta \frac{\alpha_{S}\left(m_{Z}\right)}{2 \pi} \log \left(m_{Z} / Q\right)}
$$

"Integrate out" quark flavours at their mass: β changes

Freezing of α_{S}

Consider the running of α_{S} :

"Background Field Method"

> Parameter m_{B} needs to be fixed ($\alpha_{s}(\lambda)$ is fixed by normalization to perturbative value)

Freezing:

$$
\tilde{\alpha}_{s}\left(\mu^{2}\right)=\frac{\alpha_{s}(\lambda)}{1+\beta_{0} \frac{\alpha_{s}(\lambda)}{4 \pi} \log \frac{\mu^{2}+m_{B}^{2}}{\lambda^{2}}}
$$

L. F. Abbott, NPB195 (1981)
see also the review: Deur et al., 1604.08082

Freezing of α_{S}

Consider different choices of m_{B} :

Freezing:

$$
\tilde{\alpha}_{s}\left(\mu^{2}\right)=\frac{\alpha_{s}(\lambda)}{1+\beta_{0} \frac{\alpha_{s}(\lambda)}{4 \pi} \log \frac{\mu^{2}+m_{B}^{2}}{\lambda^{2}}}
$$

Freezing of α_{S}

Consider different choices of m_{B} :

Low-energy value of α_{S} very sensitive to choice of m_{B}

Freezing:

$$
\tilde{\alpha}_{s}\left(\mu^{2}\right)=\frac{\alpha_{s}(\lambda)}{1+\beta_{0} \frac{\alpha_{s}(\lambda)}{4 \pi} \log \frac{\mu^{2}+m_{B}^{2}}{\lambda^{2}}}
$$

Limits on SR coefficients

Change in short-range coefficients as function of α_{S}^{F}, normalized to the value at $\alpha_{S}=0.32$ without freezing:

Limits on SR coefficients

Change in short-range coefficients as function of α_{S}^{F}, normalized to the value at $\alpha_{S}=0.32$ without freezing:

III.

Long-range $0 \nu \beta \beta$ reconsidered

JHEPO6 (2016) 006

Effective operators for $L R$

Consider once more:

Effective operators for $L R$

Consider once more:

At low energies,
Higgs replaced by vev
Charged current is $d=6$:
$\mathcal{L}^{\mathrm{LNV}} \propto \sum_{\alpha \beta} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}$
with:
$j_{\beta}=\bar{e} \mathcal{O}_{\beta} \nu$
$J_{\alpha}=\bar{u} \mathcal{O}_{\alpha} d$
Only \mathcal{O}_{β} with $\mathcal{O}_{\beta}=\mathcal{O}_{\beta}^{\prime} P_{R}$ interesting

Effective operators for $L R$

Consider once more:

$\Delta L=2 d-7$ operators in the SM:

At low energies,
Higgs replaced by vev
Charged current is $d=6$:
$\mathcal{L}^{\mathrm{LNV}} \propto \sum_{\alpha \beta} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}$
with:
$j_{\beta}=\bar{e} \mathcal{O}_{\beta} \nu$
$J_{\alpha}=\bar{u} \mathcal{O}_{\alpha} d$
Only \mathcal{O}_{β} with $\mathcal{O}_{\beta}=\mathcal{O}_{\beta}^{\prime} P_{R}$ interesting

Babu \& Leung, 2001
$\mathcal{O}_{2} \propto L L L e^{c} H$
$\mathcal{O}_{3} \propto L L Q d^{c} H$
$\mathcal{O}_{4} \propto L L \bar{Q} \bar{u}^{c} H$
$\mathcal{O}_{8} \propto L \bar{e}^{c} \bar{u}^{c} d^{c} H$

Effective operators for $L R$

Consider once more:

$\Delta L=2 d-7$ operators in the SM:

At low energies,
Higgs replaced by vev
Charged current is $d=6$:
$\mathcal{L}^{\text {LNV }} \propto \sum_{\alpha \beta} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}$
with:
$j_{\beta}=\bar{e} \mathcal{O}_{\beta} \nu$
$J_{\alpha}=\bar{u} \mathcal{O}_{\alpha} d$
Only \mathcal{O}_{β} with $\mathcal{O}_{\beta}=\mathcal{O}_{\beta}^{\prime} P_{R}$ interesting

Babu \& Leung, 2001
$\mathcal{O}_{2} \propto L L L e^{c} H$
$\mathcal{O}_{3} \propto L L Q d^{c} H$
$\mathcal{O}_{4} \propto L L \bar{Q} \bar{u}^{c} H$
$\mathcal{O}_{8} \propto L \bar{e}^{c} \bar{u}^{c} d^{c} H$
$\mathcal{O}_{7} \propto L \bar{e}^{c} Q \bar{Q} H H H$

$$
d=9
$$

but see below ...

Graphically:

More than one realization.
Example, ($\mathcal{O}_{3}, \# 2$):

L

$S_{3,1,-1 / 3}$ - singlet leptoquark $S_{3,2,1 / 6}$ - doublet leptoquark

$$
\Delta L=2 \text {, so } \ldots
$$

Example $d=7$: $L L Q d^{c} H$

More than one realization.
Example, ($\mathcal{O}_{3}, \# 2$):
(
$S_{3,1,-1 / 3}$ - singlet leptoquark
$S_{3,2,1 / 6}$ - doublet leptoquark

1-loop neutrino mass:

$$
\Delta L=2 \text {, so } \ldots
$$

Example $d=7$: $L L Q d^{c} H$

More than one realization.
1-loop neutrino mass:
Example, ($\mathcal{O}_{3}, \# 2$):

L

$0 \nu \beta \beta$ decay has both contributions:

(a)

(b)

Example $d=7$: $L L Q d^{c} H$

More than one realization.
1-loop neutrino mass:
Example, ($\mathcal{O}_{3}, \# 2$):

L

$0 \nu \beta \beta$ decay has both contributions:

(a)

(b)

True for all $d=7$
$\Delta L=2$
operators!

Graphically:

More than one realization.
Example, ($\mathcal{O}_{8}, \# 15$):

Example $d=7$: $L \bar{e}^{c} \bar{u}^{c} d^{c} H$

More than one realization.
Example, ($\mathcal{O}_{8}, \# 15$):
Neutrino mass:

Long-range enhanced by $\not p$
Neutrino mass is 2-loop $d=7$ suppressed!

Long-range wins over mass mechanism!

Summary table

Eff. op.	Decom.	$\left(m_{\nu}\right)_{\alpha \beta}$	$\Lambda_{7}[\mathrm{GeV}]$ suggested by $m_{\nu}=0.05 \mathrm{eV}$	$\mathcal{A}^{\mathrm{MM}} / \mathcal{A}^{\mathrm{LR}}$
$L L \overline{d_{R}} Q H$	\#1,3,4,5,6,9	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	\#2,7,8	$\frac{y_{b}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{11}$	$\frac{y_{b}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{17}$
	$[\# 1,3,5,8$	$\frac{y_{b} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{2}}{\Lambda}(\alpha \neq \beta)$	$\sim 10^{8}$	$\left.\frac{y_{b} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{9}\right]$
$L L \bar{Q} u_{R} H$	\#1,3,4,5,6,8,9	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	\#2,7,8	$\frac{y_{t}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{12}$	$\frac{y_{t}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{21}$
	$[\# 1,3,5,8$	$\frac{y_{t g} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{2}}{\Lambda}(\alpha)$	$\sim 10^{10}$	$\left.\frac{y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{14}\right]$
$L e_{R} \overline{d_{R}} u_{R} H$	\#5,8,14	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	\#2,12	$\frac{y_{t}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{12}$	$\frac{y_{t}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{21}$
	\#3,11	$\frac{y_{b}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{11}$	$\frac{y_{b}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{17}$
	$\begin{gathered} \# 1,4,6,7,9 \\ 10,13,15 \\ \hline \end{gathered}$	$y_{\ell_{\beta}} \frac{y_{b} y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{4}}{\Lambda^{3}}$	$\sim 10^{3}(\beta=\tau)$	$y_{e} \frac{y_{b} y_{t g}{ }^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v}{p_{F}} \sim 10^{-9}$

Helo, Hirsch \& Ota JHEPO6 (2016) 006

Summary table

Eff. op.	Decom.	$\left(m_{\nu}\right)_{\alpha \beta}$	$\Lambda_{7}[\mathrm{GeV}]$ suggested by $m_{\nu}=0.05 \mathrm{eV}$	$\mathcal{A}^{\mathrm{MM}} / \mathcal{A}^{\mathrm{LR}}$
$L L \overline{d_{R}} Q H$	\#1,3,4,5,6,9	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	\#2,7,8	$\frac{y_{b}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{11}$	$\frac{y_{b}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{17}$
	$[\# 1,3,5,8$	$\frac{y_{b} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{2}}{\Lambda}(\alpha \neq \beta)$	$\sim 10^{8}$	$\left.\frac{y_{b} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{9}\right]$
$L L \bar{Q} u_{R} H$	\#1,3,4,5,6,8,9	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	\#2,7,8	$\frac{y_{t}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{12}$	$\frac{y_{t}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{21}$
	$[\# 1,3,5,8$	$\frac{y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{2}}{\Lambda}(\alpha \neq \beta)$	$\sim 10^{10}$	$\left.\frac{y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{14}\right]$
$L e_{R} \overline{d_{R}} u_{R} H$	\#5,8,14	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	\#2,12	$\frac{y_{t}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{12}$	$\frac{y_{t}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{21}$
	\#3,11	$\frac{y_{b}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{11}$	$\frac{y_{b}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{17}$
	$\begin{gathered} \# 1,4,6,7,9 \\ 10,13,15 \\ \hline \hline \end{gathered}$	$y_{\ell_{\beta}} \frac{y_{b} y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{4}}{\Lambda^{3}}$	$\sim 10^{3}(\beta=\tau)$	$y_{e} \frac{y_{b} y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v}{p_{F}} \sim 10^{-9}$

Helo, Hirsch \& Ota JHEPO6 (2016) 006
\Rightarrow Assumes SM couplings 3rd generation and unknown couplings $\mathcal{O}(1)$!

Summary table

Eff. op.	Decom.	$\left(m_{\nu}\right)_{\alpha \beta}$	$\Lambda_{7}[\mathrm{GeV}]$ suggested by $m_{\nu}=0.05 \mathrm{eV}$	$\mathcal{A}^{\mathrm{MM}} / \mathcal{A}^{\mathrm{LR}}$
$L L \overline{d_{R}} Q H$	\#1,3,4,5,6,9	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	\#2,7,8	$\frac{y_{b}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{11}$	$\frac{y_{b}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{17}$
	$[\# 1,3,5,8$	$\frac{y_{b} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{2}}{\Lambda}(\alpha \neq \beta)$	$\sim 10^{8}$	$\left.\frac{y_{b} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{9}\right]$
$L L \bar{Q} u_{R} H$	\# 1,3,4,5,6,8,9	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	$\# 2,7,8$	$\frac{y_{t}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{12}$	$\frac{y_{t}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{21}$
	$[\# 1,3,5,8$	$\frac{y_{t g} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{2}}{\Lambda}(\alpha)$	$\sim 10^{10}$	$\left.\frac{y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{14}\right]$
$L e_{R} \overline{d_{R}} u_{R} H$	\#5,8,14	$\frac{v^{2}}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^{2}}{p_{F} v} \sim 10^{28}$
	\#2,12	$\frac{y_{t}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{12}$	$\frac{y_{t}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{21}$
	\#3,11	$\frac{y_{b}}{16 \pi^{2}} \frac{v^{2}}{\Lambda}$	$\sim 10^{11}$	$\frac{y_{b}}{16 \pi^{2}} \frac{\Lambda^{2}}{p_{F} v} \sim 10^{17}$
	$\begin{gathered} \# 1,4,6,7,9 \\ 10,13,15 \\ \hline \end{gathered}$	$y_{\ell_{\beta}} \frac{y_{b} y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v^{4}}{\Lambda^{3}}$	$\sim 10^{3}(\beta=\tau)$	$y_{e} \frac{y_{b} y_{t} g^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{v}{p_{F}} \sim 10^{-9}$

Helo, Hirsch \& Ota JHEPO6 (2016) 006
\Rightarrow Assumes SM couplings 3rd generation and unknown couplings $\mathcal{O}(1)$!
Extreme example:
Tree-level: $\quad \Lambda \sim 10^{15} \mathrm{GeV}(Y=1) \quad \Rightarrow \quad \Lambda \sim 10^{3} \mathrm{GeV}\left(Y \sim 10^{-6} \sim Y_{e}\right)$

Another look at:

$d=7$ versus $d=9$ operator

Another example, ($\left.\mathcal{O}_{8}, \# 14\right)$:

$d=7$ versus $d=9$ operator

Another example, $\left(\mathcal{O}_{8}, \# 14\right)$:

In left-right symmetric extension of SM:

$d=7$ versus $d=9$ operator

Another example, $\left(\mathcal{O}_{8}, \# 14\right)$:

Compare to $d=9 \mathcal{O}_{7}$ decomposition:

$d=7$ versus $d=9$ operator

Another example, $\left(\mathcal{O}_{8}, \# 14\right)$: In left-right symmetric extension of SM:

Compare to $d=9 \mathcal{O}_{7}$ decomposition:

d $d=7$ versus $d=9$ operator

$\sim\langle\eta\rangle \propto \frac{g_{L}^{2} g_{R}^{2} v_{S M}^{2}}{m_{W_{R}}^{2} m_{W_{L}}^{2}} \times \frac{Y v_{S M}}{m_{N}} \rightarrow \frac{v_{S M}}{\Lambda^{3}}$
\Rightarrow What is the scale of LNV?

(a)

Mass mechanism
near GUT scale ?

(b)
"long-range"
$\left(10^{3}-10^{6}\right) \mathrm{GeV}$?

(c)
"short-range"
"few" TeV?

