$0 u\beta\beta$ decay:

Beyond the mass mechanism

(v.19.5)

Martin Hirsch

Instituto de Física Corpuscular - CSIC Universidad Valencia, Spain

http://www.astroparticles.es/

CSIC

 $\mathcal{I}. \ Introduction$

 $\mathcal{II}.$ Run and Freeze

 \mathcal{III} . Long-range $0\nu\beta\beta$ reconsidered

 \mathcal{IV} . Conclusions

MEDEX; May 27-31, 2019 - p.2/29

Introduction

MEDEX; May 27-31, 2019 - p.3/29

Black box!

Experimentalist observes:

Express half-live as:

 $\left[T_{1/2}^{0\nu\beta\beta}\right]^{-1} = G_{0\nu} |\epsilon_i|^2 |M_i^{0\nu\beta\beta}|^2$

 $G_{0
u}$ - phase space $M_i^{0
uetaeta}$ - nuclear matrix element ϵ_i - particle physics

Many, many possible contributions!

Note: Factorization requires no new physics with $\Lambda \simeq p_F$

$0\nu\beta\beta$ decay: Decomposition

Amplitude for $(Z, A) \rightarrow (Z \pm 2, A) + e^{\mp} e^{\mp}$ can be divided into:

Mass mechanism

"long-range"

Higher order:

II.

Run and freeze

PRD97 (2018) 115005 and PRD93 (2016) 013017

MEDEX; May 27-31, 2019 - p.6/29

Consider any short-range operator. At tree-level:

Consider any short-range operator. At tree-level:

Heavy particles integrated out at scale Λ :

 $\Lambda \simeq g_{eff}^{4/5}$ (2-7) TeV

Consider any short-range operator. At tree-level:

Heavy particles integrated out at scale Λ :

 $\Lambda \simeq g_{eff}^{4/5}$ (2-7) TeV

 \Rightarrow Double beta decay is a low-energy process. Energy scale:

 $p_F\simeq 100~{
m MeV}$

 \Rightarrow Need to run operator from $\Lambda \simeq$ TeV to $\mu \simeq 10^{-4}$ TeV

At tree-level:

Add gluon exchange diagrams Naive estimate is: $\alpha_S/(4\pi) \times \ln(\Lambda/\mu) \simeq$ (20-30) %

At tree-level:

BUT ...

Colour index connects different nucleon currents: "Operator mixing" ⇒ Limits change considerably

Consider the running of α_S , usually stop running at $\sim 1 \text{ GeV}$:

At 1-loop level:

$$\alpha_S(Q^2) \simeq \frac{\alpha_S(m_Z)}{1 - \beta \frac{\alpha_S(m_Z)}{2\pi} \log(m_Z/Q)}$$

Experimental input: $\alpha_S(m_Z) \simeq 0.118$

Consider the running of α_S , usually stop running at $\sim 1 \text{ GeV}$:

 $0
u\beta\beta \Rightarrow 0
u\beta\beta(Q^2)$ with: $Q \simeq (0.1 - 0.2) \text{ GeV}$

What happens below 1 GeV?

At 1-loop level:

$$\alpha_S(Q^2) \simeq \frac{\alpha_S(m_Z)}{1 - \beta \frac{\alpha_S(m_Z)}{2\pi} \log(m_Z/Q)}$$

Experimental input: $\alpha_S(m_Z) \simeq 0.118$

Consider the running of α_S :

At 1-loop level:

$$\alpha_S(Q^2) \simeq \frac{\alpha_S(m_Z)}{1 - \beta \frac{\alpha_S(m_Z)}{2\pi} \log(m_Z/Q)}$$

"Integrate out" quark flavours at their mass: β changes

Consider the running of α_S :

At 1-loop level:

$$\alpha_S(Q^2) \simeq \frac{\alpha_S(m_Z)}{1 - \beta \frac{\alpha_S(m_Z)}{2\pi} \log(m_Z/Q)}$$

"Integrate out" quark flavours at their mass: β changes

Consider the running of α_S :

"Background Field Method"

Parameter m_B needs to be fixed

 $(\alpha_s(\lambda))$ is fixed by normalization to perturbative value)

Freezing:

$$\tilde{\alpha}_s(\mu^2) = \frac{\alpha_s(\lambda)}{1 + \beta_0 \frac{\alpha_s(\lambda)}{4\pi} \log \frac{\mu^2 + m_B^2}{\lambda^2}}$$

L. F. Abbott, NPB195 (1981)

see also the review: Deur et al., 1604.08082

Freezing of α_S

Consider different choices of m_B :

Freezing:

$$\tilde{\alpha}_s(\mu^2) = \frac{\alpha_s(\lambda)}{1 + \beta_0 \frac{\alpha_s(\lambda)}{4\pi} \log \frac{\mu^2 + m_B^2}{\lambda^2}}$$

Freezing of α_S

Consider different choices of m_B :

Low-energy value of α_S very sensitive to choice of m_B

Freezing:

$$\tilde{\alpha}_s(\mu^2) = \frac{\alpha_s(\lambda)}{1 + \beta_0 \frac{\alpha_s(\lambda)}{4\pi} \log \frac{\mu^2 + m_B^2}{\lambda^2}}$$

Limits on SR coefficients

Change in short-range coefficients as function of α_S^F , normalized to the value at $\alpha_S = 0.32$ without freezing:

Limits on SR coefficients

Change in short-range coefficients as function of α_S^F , normalized to the value at $\alpha_S = 0.32$ without freezing:

 \Rightarrow For $\alpha_S^F \lesssim 0.8$ changes are ~ 2

 \Rightarrow For $\alpha_S^F \gtrsim 0.8$ large uncertainty in nearly all coefficients

Long-range $0\nu\beta\beta$ reconsidered

JHEP06 (2016) 006

MEDEX; May 27-31, 2019 - p. 17/29

Consider once more:

Consider once more:

At low energies, Higgs replaced by vev Charged current is d = 6:

$$\mathcal{L}^{\mathrm{LNV}}\propto\sum_{lphaeta}\epsilon^{eta}_{lpha}j_{eta}J_{lpha}$$

with:

$$j_{\beta} = \bar{e}\mathcal{O}_{\beta}\nu$$
$$J_{\alpha} = \bar{u}\mathcal{O}_{\alpha}d$$

Only \mathcal{O}_{β} with $\mathcal{O}_{\beta} = \mathcal{O}'_{\beta}P_R$ interesting

Consider once more:

 $\Delta L = 2 d - 7$ operators in the SM:

 $egin{aligned} \mathcal{O}_2 \propto LLLe^c H \ \mathcal{O}_3 \propto LLQd^c H \ \mathcal{O}_4 \propto LLar{Q}ar{u}^c H \ \mathcal{O}_8 \propto Lar{e}^car{u}^c d^c H \end{aligned}$

At low energies, Higgs replaced by vev Charged current is d = 6:

$$\mathcal{L}^{\mathrm{LNV}} \propto \sum_{lphaeta} \epsilon^{eta}_{lpha} j_{eta} J_{lpha}$$

with:

$$j_{\beta} = \bar{e}\mathcal{O}_{\beta}\nu$$
$$J_{\alpha} = \bar{u}\mathcal{O}_{\alpha}d$$

Only \mathcal{O}_{β} with $\mathcal{O}_{\beta} = \mathcal{O}'_{\beta} P_R$ interesting

Babu & Leung, 2001

Consider once more:

 $\Delta L = 2 d - 7$ operators in the SM:

 $egin{aligned} &\mathcal{O}_2 \propto LLLe^c H \ &\mathcal{O}_3 \propto LLQd^c H \ &\mathcal{O}_4 \propto LLar{Q}ar{u}^c H \ &\mathcal{O}_8 \propto Lar{e}^car{u}^c d^c H \ &\mathcal{O}_7 \propto Lar{e}^cQar{Q}HHH \end{aligned}$

d = 9,

At low energies, Higgs replaced by vev

Charged current is d = 6:

$$\mathcal{L}^{\mathrm{LNV}} \propto \sum_{lphaeta} \epsilon^{eta}_{lpha} j_{eta} J_{lpha}$$

with:

$$j_{\beta} = \bar{e}\mathcal{O}_{\beta}\nu$$
$$J_{\alpha} = \bar{u}\mathcal{O}_{\alpha}d$$

Only \mathcal{O}_{β} with $\mathcal{O}_{\beta} = \mathcal{O}'_{\beta} P_R$ interesting

Babu & Leung, 2001

but see below ...

MEDEX; May 27-31, 2019 - p.18/29

Graphically:

More than one realization. Example, $(\mathcal{O}_3, \#2)$:

 $S_{3,1,-1/3}$ - singlet leptoquark $S_{3,2,1/6}$ - doublet leptoquark

 $\Delta L=2\text{, so }\dots$

More than one realization. Example, $(\mathcal{O}_3, \#2)$:

1-loop neutrino mass:

 $S_{3,1,-1/3}$ - singlet leptoquark $S_{3,2,1/6}$ - doublet leptoquark

 $\Delta L=2\text{, so }\dots$

More than one realization. Example, $(\mathcal{O}_3, \#2)$:

1-loop neutrino mass:

 $0\nu\beta\beta$ decay has both contributions:

MEDEX; May 27-31, 2019 - p.22/29

More than one realization. Example, $(\mathcal{O}_3, \#2)$:

1-loop neutrino mass:

 $0\nu\beta\beta$ decay has both contributions:

True for all d = 7 $\Delta L = 2$ operators!

Example d = 7: $L\bar{e}^c\bar{u}^c d^c H$

Graphically:

Example d = 7: $L\bar{e}^c\bar{u}^c d^c H$

More than one realization. Example, $(\mathcal{O}_8, \#15)$:

Example d = 7: $L\bar{e}^c\bar{u}^c d^c H$

More than one realization. Example, $(\mathcal{O}_8, \#15)$:

Neutrino mass:

Long-range enhanced by p

Neutrino mass is 2-loop d = 7 suppressed!

Long-range wins over mass mechanism!

Summary table

Eff. op.	Decom.	$(m_ u)_{lphaeta}$	$\begin{array}{c} \Lambda_7 \; [\text{GeV}] \\ \text{suggested} \\ \text{by} \; m_{\nu} = 0.05 \; \text{eV} \end{array}$	$\mathcal{A}^{ ext{MM}}/\mathcal{A}^{ ext{LR}}$
$LL\overline{d_R}QH$	#1,3,4,5,6,9	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	#2,7,8	$rac{y_b}{16\pi^2}rac{v^2}{\Lambda}$	$\sim 10^{11}$	$\frac{y_b}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{17}$
	#1, 3, 5, 8	$\frac{y_b g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} \ (\alpha \neq \beta)$	$\sim 10^8$	$\frac{y_b g^2}{(16\pi^2)^2} \frac{\Lambda^2}{p_F v} \sim 10^9$
$LL\overline{Q}u_RH$	$\#1,\!3,\!4,\!5,\!6,\!8,\!9$	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	#2,7,8	$\frac{y_t}{16\pi^2}\frac{v^2}{\Lambda}$	$\sim 10^{12}$	$\frac{y_t}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{21}$
	$\left[\#1, 3, 5, 8\right]$	$\frac{y_t g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} \ (\alpha \neq \beta)$	$\sim 10^{10}$	$\frac{y_t g^2}{(16\pi^2)^2} \frac{\Lambda^2}{p_F v} \sim 10^{14} $
$Le_R \overline{d_R} u_R H$	#5,8,14	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	#2,12	$\frac{y_t}{16\pi^2}\frac{v^2}{\Lambda}$	$\sim 10^{12}$	$\frac{y_t}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{21}$
	#3,11	$\frac{y_b}{16\pi^2}\frac{v^2}{\Lambda}$	$\sim 10^{11}$	$rac{y_b}{16\pi^2} rac{\Lambda^2}{p_F v} \sim 10^{17}$
	$\#1,4,6,7,9,\ 10,13,15$	$y_{\ell_eta} rac{y_b y_t g^2}{(16\pi^2)^2} rac{v^4}{\Lambda^3}$	$\sim 10^3~(\beta=\tau)$	$y_e \frac{y_b y_t g^2}{(16\pi^2)^2} \frac{v}{p_F} \sim 10^{-9}$

Helo, Hirsch & Ota JHEP06 (2016) 006

Summary table

Eff. op.	Decom.	$(m_ u)_{lphaeta}$	$\begin{array}{c} \Lambda_7 \; [\text{GeV}] \\ \text{suggested} \\ \text{by} \; m_{\nu} = 0.05 \; \text{eV} \end{array}$	$\mathcal{A}^{ ext{MM}}/\mathcal{A}^{ ext{LR}}$
$LL\overline{d_R}QH$	#1,3,4,5,6,9	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	#2,7,8	$rac{y_b}{16\pi^2}rac{v^2}{\Lambda}$	$\sim 10^{11}$	$\frac{y_b}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{17}$
	#1, 3, 5, 8	$\frac{y_b g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} \ (\alpha \neq \beta)$	$\sim 10^8$	$\frac{y_b g^2}{(16\pi^2)^2} \frac{\Lambda^2}{p_F v} \sim 10^9 \bigg]$
$LL\overline{Q}u_RH$	$\#1,\!3,\!4,\!5,\!6,\!8,\!9$	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	#2,7,8	$\frac{y_t}{16\pi^2}\frac{v^2}{\Lambda}$	$\sim 10^{12}$	$\frac{y_t}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{21}$
	$\left[\#1, 3, 5, 8\right]$	$\frac{y_t g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} \ (\alpha \neq \beta)$	$\sim 10^{10}$	$\frac{y_t g^2}{(16\pi^2)^2} \frac{\Lambda^2}{p_F v} \sim 10^{14} $
$Le_R \overline{d_R} u_R H$	#5,8,14	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	$#2,\!12$	$\frac{y_t}{16\pi^2}\frac{v^2}{\Lambda}$	$\sim 10^{12}$	$\frac{y_t}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{21}$
	#3,11	$rac{y_b}{16\pi^2}rac{v^2}{\Lambda}$	$\sim 10^{11}$	$rac{y_b}{16\pi^2} rac{\Lambda^2}{p_F v} \sim 10^{17}$
	$\#1,4,6,7,9,\ 10,13,15$	$y_{\ell_eta} rac{y_b y_t g^2}{(16\pi^2)^2} rac{v^4}{\Lambda^3}$	$\sim 10^3~(\beta=\tau)$	$y_e \frac{y_b y_t g^2}{(16\pi^2)^2} \frac{v}{p_F} \sim 10^{-9}$

Helo, Hirsch & Ota JHEP06 (2016) 006

 \Rightarrow Assumes SM couplings 3rd generation and unknown couplings $\mathcal{O}(1)!$

Summary table

Eff. op.	Decom.	$(m_ u)_{lphaeta}$	$\begin{array}{c} \Lambda_7 \; [\text{GeV}] \\ \text{suggested} \\ \text{by} \; m_{\nu} = 0.05 \; \text{eV} \end{array}$	$\mathcal{A}^{ ext{MM}}/\mathcal{A}^{ ext{LR}}$
$LL\overline{d_R}QH$	#1,3,4,5,6,9	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	#2,7,8	$\frac{y_b}{16\pi^2} \frac{v^2}{\Lambda}$	$\sim 10^{11}$	$\frac{y_b}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{17}$
	$\left[\#1, 3, 5, 8\right]$	$\frac{y_b g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} \ (\alpha \neq \beta)$	$\sim 10^8$	$\frac{y_b g^2}{(16\pi^2)^2} \frac{\Lambda^2}{p_F v} \sim 10^9 \bigg]$
$LL\overline{Q}u_RH$	$\#1,\!3,\!4,\!5,\!6,\!8,\!9$	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	#2,7,8	$\frac{y_t}{16\pi^2}\frac{v^2}{\Lambda}$	$\sim 10^{12}$	$\frac{y_t}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{21}$
	$\left[\#1, 3, 5, 8\right]$	$\frac{y_t g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} \ (\alpha \neq \beta)$	$\sim 10^{10}$	$\frac{y_t g^2}{(16\pi^2)^2} \frac{\Lambda^2}{p_F v} \sim 10^{14} $
$Le_R \overline{d_R} u_R H$	#5,8,14	$\frac{v^2}{\Lambda}$	$\sim 10^{15}$	$\frac{\Lambda^2}{p_F v} \sim 10^{28}$
	$#2,\!12$	$\frac{y_t}{16\pi^2}\frac{v^2}{\Lambda}$	$\sim 10^{12}$	$\frac{y_t}{16\pi^2} \frac{\Lambda^2}{p_F v} \sim 10^{21}$
	#3,11	$rac{y_b}{16\pi^2}rac{v^2}{\Lambda}$	$\sim 10^{11}$	$rac{y_b}{16\pi^2} rac{\Lambda^2}{p_F v} \sim 10^{17}$
	$\#1,4,6,7,9,\ 10,13,15$	$y_{\ell_eta} rac{y_b y_t g^2}{(16\pi^2)^2} rac{v^4}{\Lambda^3}$	$\sim 10^3~(\beta=\tau)$	$y_e \frac{y_b y_t g^2}{(16\pi^2)^2} \frac{v}{p_F} \sim 10^{-9}$

Helo, Hirsch & Ota JHEP06 (2016) 006

 \Rightarrow Assumes SM couplings 3rd generation and unknown couplings $\mathcal{O}(1)!$

Extreme example:

Tree-level: $\Lambda \sim 10^{15} \text{ GeV} (Y = 1) \Rightarrow \Lambda \sim 10^3 \text{ GeV} (Y \sim 10^{-6} \sim Y_e)$

Another look at:

Another example, $(\mathcal{O}_8, \#14)$:

MEDEX; May 27-31, 2019 - p.27/29

$$\sim \langle \eta \rangle \propto rac{g_L^2 g_R^2 v_{SM}^2}{m_{W_R}^2 m_{W_L}^2} imes rac{Y v_{SM}}{m_N}
ightarrow rac{v_{SM}}{\Lambda^3}$$

MEDEX; May 27-31, 2019 - p.28/29

Conclusions ???

 \Rightarrow What is the scale of LNV?

