Search for β^+EC and EC/EC decay of ^{74}Se

N.I.Rukhadze (JINR, Dubna) on behalf of Obelix collaboration

NRC "Kurchatov Institute - ITEP, Russia JINR, Dubna, Russia IEAP, CTU Prague, Czech Republic LSM, Modane, France

Medex'19, Prague, May 30st, 2019

SEARCH FOR DOUBLE BETA DECAY

At present 2v2β⁻ decay was detected in 11 nuclei:
 ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U and 2vEC/EC in ¹³⁰Ba was detected in geochemical experiment

Double beta decay to excited states of daughter nuclei are accompanied by emission of γ -quanta in de-excitation of excited states. These γ -quanta may be detected by low background HPGe detectors with high efficiency and good energy resolution.

```
2v2\beta^{-} decay to excited states was detected in
<sup>100</sup>Mo - <sup>100</sup>Ru (0+<sub>1</sub>, 1130.3 keV) and <sup>150</sup>Nd - <sup>150</sup>Sm (0+<sub>1</sub>, 740.4 keV).
```

¹⁰⁰Mo - ¹⁰⁰Ru (0+₁, 1130.3 keV) decay was detected in several experiments, including measurements performed at LSM, Modane with the Obelix HPGe spectrometer

```
(R. Arnold et al. Nucl. Phys. A 925 (2014) 25)
```

Investigation of 2vββ decay of ¹⁰⁰Mo-¹⁰⁰Ru to excited states

¹⁰⁰Mo \rightarrow 0⁺, 1130 keV ¹⁰⁰Ru^{*} observable γ 590.8+ γ 539.5 keV ¹⁰⁰Mo \rightarrow 2⁺, 540 keV ¹⁰⁰Ru observable γ 539.5 keV

 $T_{1/2} (0^{+}_{1}, 1130.3 \text{ keV}) = [7.5 \pm 0.6(\text{stat.}) \pm 0.6(\text{sys.})] \times 10^{20} \text{ yr} (90 \% \text{ CL})$ R. Arnold et al., Nuclear Physics A925 (2014) 25 ³

Laboratoire Souterrain de Modane

Fréjus Tunnel at the French-Italian border Depth - 1800 m of rock (4800 mwe)

Muons flux - 4 muons / m² x day⁻¹ (2x10⁶ reduction factor) Neutrons flux - 3000 fast neutrons (>1MeV) per m² and per day (1000 reduction factor)

Detector Obelix*

P type coaxial HPGe detector Canberra in U-type ultra low background cryostat located at LSM, France (4800 m w.e.) Sensitive volume 600 cm³ Efficiency ~160% Peak / Compton 83 Energy resolution ~1.2 keV at 122 keV (⁵⁷Co), ~2 keV at 1332 keV (⁶⁰Co) Distance from cap 4 mm Entrance window AI, 1.6 mm

*JINST 12 (2017) P02004.

Passive Shielding ~12 cm arch. Pb ~20 cm low active Pb, Radon free air

Configurations of the Obelix passive shielding

PbI ~ 12 cm of archeological lead (activity of < 60 mBq/kg) (~7 cm can be removed) PbII ~ 20 cm of low-active lead (activity of 5 - 20 Bq/kg)

Efficiencies of the Obelix for some geometries

Double beta decay of ⁷⁴Se

In present investigation we used powder of natural Se with a mass of m=1.6 kg, containing ≈0.89% of ⁷⁴Se (14.24 g). Natural Se was placed into a Teflon box with a diameter of d=115 mm, a height of h=80 mm, and thickness of walls 3 mm. Sample with natural Se was placed on the end cap of the Obelix detector and measured during 135 days.

Simulation was performed using ROOT-VMC-GEANT4 DPGE package in the energy region of 0.05- 5 MeV.

To test the detector efficiency for low background measurements we used low-active samples prepared from La₂O₃ with known mass and activity. (JINST 12 (2017) P02004)

Simulated geometry of measurements

Background measurement with Obelix in 2017

Counting rate [30 – 2900 keV] 95 counts/day•kg

Background of Obelix in 2019, T_{meas}=1278h

HPGE spectrum

Measurement of Se sample

ROI of the spectrum of Se-nat

Fit of some ROI of the spectrum of Se-nat

10 E 10_⊏ Events / (0.177336) Events / (0.177336) 9 Gaussian fit results (CL=90%): Gaussian fit results (CL=90%) 9 Intensity: -0.4 +/- 7.2 cnt Intensity: 9.0 +/- 9.5 cnt Position: 1187.00 +/- 0.00 keV Position: 1204.00 +/- 0.00 ke 8 8 Sigma: 0.99 +/- 0.00 keV Sigma: 0.99 +/- 0.00 keV 7 7F 6 6 5 5⊢ 4 зЩ зF 2₩ 2 ******* n. 1194 1196 Energy, keV 1196 1178 1180 1182 1186 1188 1192 1198 1200 1202 1204 1206 1208 1184 1190

1196.7 keV

1206.4 keV

1212 121 Energy, keV

1210

1214

Preliminary results for double beta decay of ⁷⁴**Se**

Decay transition	γ-rays, keV	Efficien- cy, %	N _{excl}	T _{1/2} , 10 ¹⁹ y CL=90%, this work	T _{1/2} , 10 ¹⁹ y CL=90% [1]	T _{1/2} , 10 ¹⁹ y CL=90% [2]
$0vLL \rightarrow 2^+_2, 1204.2$	595.9 + 1204.2	1.23 0.57	31.3 18.5	1.10	0.55	0.70
$0vLL \rightarrow 2^+_{1},595.9$	595.9	1.82	31.3	1.58	1.30	0.82
$0vLL \rightarrow g.s.$	1206.4	1.67	7.0	6.47	0.41	0.58
0vKL → 2 ⁺ ₁ ,595.9	600.9 595.9	1.81 1.81	11.3 31.3	<mark>4.37</mark> 1.57	1.12	0.82
$0vKL \rightarrow g.s.$	1196.7	1.67	13.1	3.48	0.64	0.96
0vKK → 2 ⁺ ₁ ,595.9	591.2 595.9	1.81 1.81	11.2 31.3	<mark>4.39</mark> 1.57	1.57	1.43
$0vKK \rightarrow g.s.^*$	1187.0	1.67	9.4	4.83	0.62	-
$2vECEC \rightarrow 2^{+}_{2}, 1204.2$	595.9 + 1204.2	1.23 0.57	31.3 18.5	1.10	0.55	0.70
$2vECEC \rightarrow 2_{1}^{+},595.9$	595.9	2.11	31.3	1.83	0.77	0.92
$(0v+2v)\beta^+EC \rightarrow g.s.$	511	4.32	511.8	0.23	0.19	-

[1] A.S.Barabash et al., Nuclear Physics A 785(2007)371

[2] B.Lehnert et al.. J.Phys.G. Nucl. Part. Phys. 43 (2016) 085201

Future plans of measurements

The investigation of double beta decay of ⁹⁶Zr and ¹⁵⁰Nd to excited states of daughter nuclei will be performed with detectors Obelix and Idefix (new P type coaxial ultra low-background HPGe detector similar to Obelix). Idefix was produced by company of Mirion (Canberra) and instaled in LSM in 2017.

Thank you for your attention