

Status and results of the CUORE experiment

Giovanni Benato

MEDEX'19

0 uetaeta decay: what and why $ar{2}$

$\beta\beta$ decay signature

- Continuum for $2\nu\beta\beta$ decay, peak at $Q_{\beta\beta}$ for $0\nu\beta\beta$ decay
- Additional signatures from signal topology, pulse shape discrimination, ...

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu} \cdot |M_{0\nu}|^2 \cdot \frac{|f|^2}{m_e^2}$$

- $T_{1/2}^{0\nu} = 0\nu\beta\beta$ decay half life
- $G_{0\nu}$ = phase space (known)
- $M_{0\nu}$ = nuclear matrix element (NME)
- f = new physics

CUORE: the Cryogenic Underground Observatory for Rare Events

- TeO₂ crystals are source and detector for $0\nu\beta\beta$ decay of 130 Te
- First ton scale array of cryogenic calorimeters (bolometers)
- Located at the Laboratory Nazionali del Gran Sasso (LNGS) of INFN, Italy
 - \Rightarrow Natural shielding of \sim 3600 mwe
 - \Rightarrow Also on google maps!

Advantages

- Decoupling of infrastructure and detectors
 - \Rightarrow Multi-isotope approach possible
 - \Rightarrow Ideal for confirming eventual discovery
- High energy resolution
- Ultra-low background achievable with particle identification
- Granular geometry
 - \Rightarrow Rejection of high-multiplicity events
 - \Rightarrow Self-shielding

Why ¹³⁰Te?

- Q-value: 2528 keV
 - \Rightarrow Above most natural radioactive background
 - \Rightarrow Between $^{208}{\rm TI}$ line and its Compton edge
- Natural abundance: 34.2%
 - \Rightarrow No enrichment needed. At least not yet.
- \blacksquare TeO_2 crystals can easily be produced in large size and amount
- Source = detector
 - \Rightarrow High containment efficiency ($arepsilon_{MC} \sim$ 90%)
- Relatively large phase space
 - \Rightarrow Shorter $0\nu\beta\beta$ half life

 ■ Detect temperature variation due to phonon contribution of released energy
 ⇒ High energy resolution: currently ~ 0.2%, with room for

 \Rightarrow High energy resolution: currently \sim 0.2%, with room to improvement

Allow to change crystal and isotope

How do cryogenic calorimeters work?

- Heat capacity: $C = C(T) \propto T^3 \Rightarrow$ Need to work at ~ 10 mK
- Temperature response (pulse height): $\Delta T = \Delta E / C$
- \blacksquare Relaxation through weak link with thermal conductivity G
- Pulse decay constant: $\tau = C/G$

Crystals

- $\blacksquare~5\times5\times5~cm^3$, $\sim750~g$
- 988 crystals \Rightarrow Cut coincidences

Temperature readout

- NTD germanium thermistors
- $R(T) = R_* \cdot \exp(T_*/T)^{1/2}$
- $\blacksquare~3.0\times2.9\times0.9~mm^3$

Crystal holders and readout

- Copper frames, PTFE holders
- Cu-PEN flat cables
- 19 towers, 52 crystals per tower

Stabilization

- Silicon heaters as pulser
- $\blacksquare~2.3\times2.4\times0.5~mm^3$

History of TeO₂ $0\nu\beta\beta$ decay experiments at LNGS

Hall A dilution refrigerator

- crystals (1991-1995)
- MiDBD (1998-2001)
- Cuoricino (2003-2008)
- CUORE-0 (2013-2015)
- CUPID-0 (2017-now)

CUORE cryostat

CUORE (2017-now)

Experiment	¹³⁰ Te Mass	FWHM	BI	$T_{1/2}^{0\nu}$ 90% CL Limit
	[kg]	[keV]	$[cts/(keV{\cdot}kg{\cdot}yr)]$	[yr]
Cuoricino	11.3	6.3	0.169(6)	$> 2.8\cdot 10^{24}$
CUORE-0	11	5.1	0.058(4)	$> 4.0 \cdot 10^{24}$
CUORE	206	\sim 8	0.014(2)	$\sim9\cdot10^{25 extsf{t}}$

[†] projected sensitivity with 5 years of live time

Cuoricino background

- $\blacksquare \sim 65\%~\alpha$ particles from crystal and copper surfaces due to U/Th contamination
 - \Rightarrow Minimize support structure; material selection; minimize exposure to radon
- ~ 35% external γ 's from ²³²Th contamination in cryostat \Rightarrow Material selection; shielding

CUORE-0: from Cuoricino to CUORE

- Test tower assembly and installation procedure for CUORE
- \blacksquare Goal: reduce α background (2700-3900 keV) by a factor ~ 10
- Minimize crystal contamination, reduce copper mass in support structure; clean cryostat inner surface.

Copper cleaning

G. Benato

MEDEX'19

12

Copper cleaning

Copper cleaning procedure¹

- Precleaning: tetrachloroethylene, acetone and ethanol to remove machining residuals.
- \blacksquare Tumbling and smoothing (removes $\sim 1~\mu {\rm m}).$
- Electropolishing: controlled oxidation of the copper surfaces and dissolution of the so-formed oxide by applying a positive anode potential in a bath of phosphoric acid and butanol (removes $\sim 100 \ \mu$ m).
- \blacksquare Chemical etching and passivation with sulfuric acid (removes \sim 10 $\mu{\rm m}).$
- Plasma etching: surface erosion produced by plasma in vacuum (removes 2µm). Vacuum prevents recontamination and promotes desorption of contaminants.
- \blacksquare Yields $< 1.3 \cdot 10^{-7}~{\rm Bq/cm^2}$ (90% C.L.) for both $^{238}{\rm U}$ and $^{232}{\rm Th}$

¹F. Alessandria et al., Astropart. Phys. 45 (2013) 13-22.

TeO₂ crystal production for CUORE-0/CUORE⁵

- TeO₂ crystals produced by SICCAS in Shanghai, China.
- ²³⁸U and ²³²Th contamination of raw metallic Te and TeO₂ powder (screened with germanium spectrometers and ICP-MS): $< 2 \cdot 10^{-10}$ g/g (90% C.L.).
- Crystals produced with Bridgman growth using platinum crucibles.
- Crystals shipped to Italy by sea to minimize cosmic activation, then stored underground in nitrogen atmosphere.
- Final crystal contamination in table.

⁵C. Arnaboldi et al., J. Cryst. Growth 312 (2010) 2999-3008.
 ⁶C. Alduino et al., Eur. Phys. J. C (2017) 77:13.

main support plate Y-beam Minus-K isolators modern lead cryostat H₃BO₃ sand filled panels columns polythylene concrete walls seismic insulators

- Underground location: $3 \cdot 10^{-8} \ \mu/cm^2/s$
- Polyethilene and H₃BO₃ neutron shieldings
- 70 tons of external lead shielding
- 6.5 tons of Roman Pb inside the cryostat
- Copper cryostat absorbs Pb X-rays

- Screening of all parts
- Underground storage to avoid cosmic activation
- Tower assembly in underground class 1000 clean room (CR)
- $\hfill\blacksquare$ Towers stored in N_2 athmosphere to minimize Rn contamination
- Dedicated CR with Rn-free air for tower installation

CUORE installation

Installation history

- Jul. 27, 2016: first tower installed
- Aug, 28, 2016: installation complete
- Sep. Nov. 2016: cable routing, electronics and DAQ tests, cryostat closure
- Dec. 5, 2016: cool-down started
- Jan. 27, 2017: first pulse!

Preservation of crystal radio-purity

- Dedicated temporary clean room (CR6) flushed with radon-free air
- Towers in N₂ atmosphere overnight for additional safety
- \blacksquare Rn level kept $\lesssim 50~mBq/m^3$ for the entire duration of the installation

Radon abatement and monitoring⁴

Radon Abatement System

- \blacksquare Provides $\sim 120~m^3/hr$ of low-radon air
- \blacksquare Radon level at output: $<5~mBq/m^3$
- \blacksquare Factor \sim 35 reduction wrt LNGS lab

\blacksquare Compressed air $\Rightarrow~$ dryer $\Rightarrow~$ chiller $\Rightarrow~$ active carbon filter $\Rightarrow~$ heater

 \Rightarrow HEPA filters \Rightarrow CR6

Radon Monitor

- Borrowed from MPI-HD (Thanks!!)
- $\blacksquare\,\sim$ 700 L volume flushed at 7 L/min
- Sensitive to ²¹⁴Po and ²¹⁸Po (Si diode)
- \blacksquare Total efficiency: $\sim 30\%$
- \blacksquare Internal background: $\sim 300~\mu Bq/m^3$

⁴G. Benato et al., JINST 13 (2018) P01010

 \blacksquare Sensitivity for CUORE measurement: $\lesssim 5~mBq/m^3$ (integrating for 30 min)

G. Benato

MEDEX'19

⁴G. Benato et al., JINST 13 (2018) P01010

The CUORE cryostat

Temperature [K]	Mass [ton]
300	\sim 3.5
40	~ 1
4	~ 7.5
0.600	\sim 0.8
0.050	\sim 3
0.010	~ 1.5

Requirements

- \blacksquare Cool down in $\lesssim 1$ month
- \blacksquare Stay stable at \sim 10 mK for 5 yr

Solutions

- Cryogen free cryostat \Rightarrow Lower down time
- \blacksquare Fast cooling with He vapor down to \sim 40 K
- \blacksquare 5 Pulse Tubes (PT) down to ~ 4 K
- \blacksquare Dilution Unit (DU) down to $\sim 10~mK$

Apr. 17: first physics data

- Working T set at 15 mK
- Dataset 1: 3 weeks
- Further optimization campaign
- Dataset 2: 5 weeks
- Exposure: 86.3 kg·yr

Operational performance

- 99.6% of channels operative (984/988)
- Energy resolution at $Q_{\beta\beta}$: 7.7 keV (FWHM)
- \blacksquare Signal efficiency: $\sim 80\%$

The CUORE background

Limit on $\mathsf{T}_{1/2}^{0 u}$ and $|m_{etaeta}|$

- Integrate profile likelihood in the physical region ($\Gamma_{0\nu} > 0$)
- For bkg-dominated case, equivalent to Bayesian construction with flat prior on all rates
- CUORE only: $T_{1/2}^{0\nu} > 1.3 \cdot 10^{25}$ yr (90% C.I.)
- With Cuoricino and CUORE-0: $T_{1/2}^{0\nu} > 1.5 \cdot 10^{25} \text{ yr } (90\% \text{ C.I.})$
- \blacksquare Median sensitivity: $\hat{T}_{1/2}^{0\nu}=7.4\cdot 10^{24}$ yr
- 2% probability of obtaining more stringent limit
- Limit on effective mass:

 $m_{etaeta} < (110-520)$ meV (90% C.I.)

⁴CUORE Collaboration, arXiv:1710.07988

Building the CUORE background model

Maximize use of available information

- Split the data into inner and outer layers
- Split data into Multiplicity 1 (M1), Multiplicity 2 (M2), Multiplicity 2 Sum (Σ2)

Background model

- Geant4 simulation of contaminants in different cryostat components (~ 60 independent fit parameters)
- Bayesian fit using a MCMC Gibbs sampler (JAGS)
- Flat priors for all parameters except muons

G. Benato

Why separate spectra?

- Inner layer very sensitive to signal (lower background)
- Outer layer sensitive to external backgrounds
- M2 and Σ2 spectra constrain a subset of the backgrounds

Results

- Almost all events in 1-2 MeV range are $2\nu\beta\beta$ events (compare to \sim 20% in CUORE-0)
- $T_{1/2}^{2\nu} = [7.9 \pm 0.1(\text{stat}) \pm 0.2(\text{syst})] \cdot 10^{20} \text{ yr}$ (PRELIMINARY)
- CUORE-0: $T_{1/2}^{2
 u} = [8, 2\pm 0.2({
 m stat})\pm 0.6({
 m syst})]\cdot 10^{20}$ yr
- \blacksquare NEMO: $T_{1/2}^{2\nu} = [7.0 \pm 0.9 ({\rm stat}) \pm 1.1 ({\rm syst})] \cdot 10^{20} \ {\rm yr}$

Systematics

- Primary systematic from geometric splitting
- No dependence on fit threshold over the range 100-750 keV

Beyond CUORE

Lessons learned from CUORE

- 90% of background at ¹³⁰Te $Q_{\beta\beta}$ induced by degraded α from crystal, PTFE or copper surfaces
- Need to discriminate between α and β/γ or between surface and bulk
- = β/γ background "naturally" lower above the $^{208}{\rm TI}$ line at 2615 keV
- Provided that an isotope with $Q_{\beta\beta} > 2615$ keV is used, a background $\lesssim 10^{-4}$ cts/(keV·kg·yr) is achievable with the CUORE infrastructure

Optimize chances of discovery

- Isotope with high $Q_{\beta\beta}$
- Discriminate α from β/γ
 - \Rightarrow Scintillation or Cherenkov light
- Discriminate bulk from surface events

Possible isotopes

lsotope	$Q_{\beta\beta}$	Res.	Scalable	Scint.
	[keV]	[keV]		
¹³⁰ Te	2525	5–8	Yes	No
⁸² Se	2997	23	Maybe	Yes
¹⁰⁰ Mo	3034	6	Yes	Yes

Mission

Discover $0
u\beta\beta$ decay if $m_{\beta\beta} > 10$ meV ($T_{1/2}(^{100}\text{Mo}) > 10^{27}$ yr)

CUORE achievements

- Ton-scale bolometric detector is technically feasible
- Analysis of 1000 channels demonstrated
- Reliable data-driven background model constructed
- Infrastructure for next generation experiment exists

Scintillating bolometers R&D (CUPID-0, Lumineu, CUPID-Mo)

- Demonstrated large-scale enriched crystal production capability
- Internal radiopurity target met
- Demonstrated active background rejection
- \blacksquare Demonstrated $\sim 5~\text{keV}$ resolution
- \blacksquare Total background of $\sim 10^{-4}~{\rm cts}/({\rm keV\cdot kg\cdot yr}){\rm achievable}$

CUPID conceptual design

- Re-use CUORE cryogenic infrastructure at LNGS
- Li₂¹⁰⁰MoO₄ scintillating crystals
- $\blacksquare~\sim$ 1500 crystals for 270 kg of $^{100}{\rm Mo}$
- Active background rejection using light and heat signals
- Options for multiple isotopes possible
- TDR and construction readiness in 2021

Discovery potential

CUPID collaboration

High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA Materials Science Division, Argonne National Laboratory, Argonne, IL, USA INFN - Laboratori Nazionali del Gran Sasso, Assergi (AO), Italy Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Department of Nuclear Engineering, University of California, Berkeley, CA, USA Department of Physics, University of California, Berkeley, USA Università di Bologna and INFN Bologna, Bologna, Italy Massachusetts Institute of Technology, Cambridge, MA, USA Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA Technische Universität München, Physik-Department E15, Garching, Germany Dipartimento di Fisica, Università di Genova and INFN - Sezione di Genova, Genova, Italy Institute for Nuclear Research, Kviv, Ukraine INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy Lawrence Livermore National Laboratory, Livermore, CA, USA Department of Physics and Astronomy, University of California, Los Angeles, CA, USA INFN sez, di Milano Bicocca and Dipartimento di Fisica, Università di Milano Bicocca, Italy State Scientific Center of the Russian Federation - Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia Max-Planck-Institut für Physik, D-80805 München, Germany Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk, Russia Soboley Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russia Centre de Sciences Nuclèaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Orsay, France INFN - Sezione di Padova, Padova, Italy Institut de Chimie de la Matière Condensè de Bordeaux (ICMCB), CNRS, 87, Pessac, France Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN - Sezione di Roma, Roma, Italy IFN-CNR, Via Cineto Romano, I-00156 Roma, Italy Service de Physique des Particules, DSM/IRFU, CEA-Saclay, France Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA Shanghai Institute of Applied Physics (SINAP), China Institut de Physique Nuclèaire de Lvon, Université Claude Bernard, Lvon 1, Villeurbanne, France Wright Laboratory, Department of Physics, Yale University, New Haven, CT, USA Laboratorio de Física Nuclear y Astropartculas, Universidad de Zaragoza, Zaragoza, Spain

MEDEX'19

Backup: How to glue 10³ heaters and NTDs?

Robotic arm

Inspection glue

Position sensor

Quality control

Print glue matrix

Glued crystals

Backup: CUORE tower assembly

Gluing setup

Tower assembly

Finished tower

Wire bonding

Tower storage

