First-forbidden transitions in the reactor antineutrino anomaly

Leendert Hayen MEDEX'19, May 28th 2019

IKS, KU Leuven, Belgium

Introduction

Experimental status

Theory status

Forbidden decays

Conclusion

Introduction

Where is the anomaly?

Antineutrino's from β^- decay of reactor fission fragments

Where is the anomaly?

Antineutrino's from β^- decay of reactor fission fragments

What goes wrong? 2011: Measured $\# \bar{\nu}_e <$ predicted from β decay 2014: Unexplained spectral distortion wrt theory

Where is the anomaly?

Antineutrino's from β^- decay of reactor fission fragments

What goes wrong? 2011: Measured $\# \bar{\nu}_e <$ predicted from β decay 2014: Unexplained spectral distortion wrt theory

How should we interpret this?

Prediction error (mean, σ) or sterile neutrino's, something else

Where is the anomaly?

Antineutrino's from β^- decay of reactor fission fragments

What goes wrong? 2011: Measured $\# \bar{\nu}_e <$ predicted from β decay 2014: Unexplained spectral distortion wrt theory

How should we interpret this?

Prediction error (mean, σ) or sterile neutrino's, something else

When new physics lurks, look out for quirks!

Deficiency and particle physics proposal

Current deficiency in neutrino count rate at 94% (2-3 σ)

$$P_{SBL}(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}) \simeq 1$$

$$-\sin^{2} 2\theta_{\alpha 4} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right)^{\frac{1}{29}} \frac{1}{4E}$$
Very exciting,
but... it is real?

Deficiency and particle physics proposal

Current deficiency in neutrino count rate at 94% (2-3 σ)

$$P_{SBL}(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}) \simeq 1$$

$$-\sin^{2} 2\theta_{\alpha 4} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right)^{\frac{1}{29}} \frac{1}{4} \frac{1}{4$$

An *et al.* (Daya Bay Collab.), PRL 118 (2017) 251801 & J. Kopp et al., JHEP 05 (2013) 050

Antineutrino origin

Fission fragments from 235 U, 238 U, 239 Pu and 241 Pu have many β^- branches, but can only measure cumulative spectrum.

Conversion of all β branches is **tremendous** challenge A. A. Sonzogni *et al.*, PRC **91** (2015) 011301(R)

Reactor bump

Something not understood, most likely **nuclear physics** problem Hayes & Vogel, ARNPS **66** (2016) 219

Experimental status

Very short baseline experiments

Since 2011, \sim 10 experiments started setting up

Very short baseline experiments

Since 2011, \sim 10 experiments started setting up

Very short (<10m) baseline experiments: measure oscillation directly

Since 2011, \sim 10 experiments started setting up

Very short (<10m) baseline experiments: measure oscillation directly

Several experiments came online late 2017/2018! Published data from

- DANSS (Russia) 1804.04046
- STEREO (France) 1806.02096
- PROSPECT (USA) 1806.02784
- NEOS (Korea) 1610.05134

Very exciting & more coming soon!

VSBL Results: DANSS

Alekseev et al. (DANSS) PLB 787 (2018) 56

VSBL Results: PROSPECT

Ashenfelter et al. (PROSPECT) PRL 121 (2018) 251802

VSBL Results: STEREO

Almazán et al. (STEREO) PRL 121 (2018) 161801

1. 2011: Emergence of flux anomaly, sterile neutrinos?

- 1. 2011: Emergence of flux anomaly, sterile neutrinos?
- 2. 2014: Appearance of 5 MeV bump

- 1. 2011: Emergence of flux anomaly, sterile neutrinos?
- 2. 2014: Appearance of 5 MeV bump
- 3. 2017-: Very short baseline expts come online, see nothing consistent with original proposal

- 1. 2011: Emergence of flux anomaly, sterile neutrinos?
- 2. 2014: Appearance of 5 MeV bump
- 3. 2017-: Very short baseline expts come online, see nothing consistent with original proposal
- 4. Also 2017: fuel dependencies in spectra

- 1. 2011: Emergence of flux anomaly, sterile neutrinos?
- 2. 2014: Appearance of 5 MeV bump
- 3. 2017-: Very short baseline expts come online, see nothing consistent with original proposal
- 4. Also 2017: fuel dependencies in spectra

Things point to deficiencies in databases & theoretical modeling

Theory status

Experiment sees nothing, what happens to theory?

Experiment sees nothing, what happens to theory? Nuclear β decay is complicated

Experiment sees nothing, what happens to theory? Nuclear β decay is complicated

Both greatly influence the spectrum shape!

Experiment sees nothing, what happens to theory? Nuclear β decay is complicated

Both greatly influence the spectrum shape!

Additional lower order effects: Atomic, electrostatic, kinematic...

L.H. et al., Rev. Mod. Phys. 90 (2018) 015008

Analysis procedure

Experimental benchmark are ILL (Schreckenbach) cumulative electron spectra

Analysis procedure

Experimental benchmark are ILL (Schreckenbach) cumulative electron spectra

Approaches split up in 2:

1. **Conversion** method: virtual β branch fits

Analysis procedure

Experimental benchmark are ILL (Schreckenbach) cumulative electron spectra

Approaches split up in 2:

- 1. Conversion method: virtual β branch fits
- 2. Summation method: Build from databases (& extrapolate a

Much of *summation* is based on same spectral assumptions Huber, PRC **84** (2011) 024617; Mueller *et al.*, PRC **83** (2011) 054615 2 elements which require pause

- 2 elements which require pause
- 1. Central problem when comparing to ILL data

Everything below 1.8 MeV in electron spectrum is unconstrained, but ends up all over the antineutrino spectrum

- 2 elements which require pause
- 1. Central problem when comparing to ILL data

Everything below 1.8 MeV in electron spectrum is unconstrained, but ends up all over the antineutrino spectrum

Everything that changes the shape below 1.8 MeV changes the anomaly \rightarrow essential to get this right

2 elements which require pause

- 2. Depending on method, questionable approximations
 - Incorrectly estimates $(\alpha Z)^{n>1}$ effects, RAA $(\langle Z \rangle^{n>1}) \neq \langle$ RAA $(Z^{N>1})$!
 - Estimated average *b*/*Ac* from spherical mirrors, but highly transition and deformation dependent
 - All transitions assumed allowed/unique
 - No Coulomb corrections to unique shape factors
 - ...

An *et al.* (Daya Bay Collab.), PRL 118 (2017) 251801 & Hayes *et al.*, arXiv:1707.07728
Forbidden decays

Roughly $\sim 30\%$ of 8000 transitions are forbidden, usually assumed of negligible importance for anomaly

Roughly $\sim 30\%$ of 8000 transitions are forbidden, usually assumed of negligible importance for anomaly

Experimental region of interest (2-8 MeV) is dominated by forbidden decays LH, J. Kostensalo, N. Severijns, J. Suhonen, PRC 99 (2019) 031301(R)

β spectrum shape

Central element in analysis is knowledge of β spectrum shape

$$\frac{dN}{dW} \propto pW(W_0 - W)^2 F(Z, W) C(Z, W) \dots$$

β spectrum shape

Central element in analysis is knowledge of β spectrum shape

$$\frac{dN}{dW} \propto pW(W_0 - W)^2 F(Z, W) C(Z, W) \dots$$

(Almost) everything but shape factor, C, is under control

eta spectrum shape

Central element in analysis is knowledge of β spectrum shape

$$\frac{dN}{dW} \propto pW(W_0 - W)^2 F(Z, W) C(Z, W) \dots$$

(Almost) everything but shape factor, C, is under control

Approximations in state-of-the-art for non-unique forbidden transitions

- Treat as allowed
- Treat as unique forbidden

eta spectrum shape

Central element in analysis is knowledge of β spectrum shape

$$\frac{dN}{dW} \propto pW(W_0 - W)^2 F(Z, W) C(Z, W) \dots$$

(Almost) everything but shape factor, C, is under control

Approximations in state-of-the-art for non-unique forbidden transitions

- Treat as allowed
- Treat as unique forbidden

are ... not great

Shape factor

General shape factor

$$C(Z, W) = \sum_{k_e, k_\nu, K} \lambda_{k_e} \left\{ M_K^2(k_e, k_\nu) + m_K^2(k_e, k_\nu) - \frac{2\mu_{k_e}\gamma_{k_e}}{k_e W} M_K(k_e, k_\nu) m_K(k_e, k_\nu) \right\},$$

where

$$\begin{split} \lambda_{k_{e}} &= \frac{\alpha_{-k_{e}}^{2} + \alpha_{+k_{e}}^{2}}{\alpha_{-1}^{2} + \alpha_{+1}^{2}}, \\ \mu_{k_{e}} &= \frac{\alpha_{-k_{e}}^{2} - \alpha_{+k_{e}}^{2}}{\alpha_{-k_{e}}^{2} + \alpha_{+k_{e}}^{2}} \frac{k_{e}W}{\gamma_{k_{e}}}, \end{split}$$

are Coulomb functions of $\mathcal{O}(1)$

Behrens, Bühring, Electron radial wave functions, 1982

First-forbidden transitions

Depending on spin-parity change, C can be simple $(R \sim 0.01)$ $C_{0^-} \propto 1 + \frac{2R}{3W}b + \mathcal{O}(\alpha ZR, W_0R^2)$

First-forbidden transitions

Depending on spin-parity change, C can be simple $(R \sim 0.01)$ $C_{0^-} \propto 1 + \frac{2R}{3W}b + \mathcal{O}(\alpha ZR, W_0R^2)$

very difficult

$$C_{1^{-}} \propto 1 + aW + \mu_1 \gamma_1 rac{b}{W} + cW^2$$

First-forbidden transitions

Depending on spin-parity change, C can be simple $(R \sim 0.01)$ $C_{0^-} \propto 1 + \frac{2R}{3W}b + O(\alpha ZR, W_0R^2)$

very difficult

$$C_{1^-} \propto 1 + aW + \mu_1 \gamma_1 rac{b}{W} + cW^2$$

or rather simple, again

$$C_U \propto \sum_{k=1}^{L} \lambda_k \frac{p^{2(k-1)}q^{2(L-k)}}{(2k-1)![2(L-k)+1]!}$$

• Coulomb corrections at all levels: Fermi function, higher κ_e corrections, modified radial behaviour

- Coulomb corrections at all levels: Fermi function, higher κ_e corrections, modified radial behaviour
- Expressions of previous slide are correct for *pure* transitions $(\Delta J \leftrightarrow 0)$, generally higher-order matrix elements contribute $(J \leftrightarrow J + \Delta J)$

- Coulomb corrections at all levels: Fermi function, higher κ_e corrections, modified radial behaviour
- Expressions of previous slide are correct for *pure* transitions $(\Delta J \leftrightarrow 0)$, generally higher-order matrix elements contribute $(J \leftrightarrow J + \Delta J)$
- Very sensitive to nuclear structure, strong suppression makes cancellations extra dangerous

- Coulomb corrections at all levels: Fermi function, higher κ_e corrections, modified radial behaviour
- Expressions of previous slide are correct for *pure* transitions $(\Delta J \leftrightarrow 0)$, generally higher-order matrix elements contribute $(J \leftrightarrow J + \Delta J)$
- Very sensitive to nuclear structure, strong suppression makes cancellations extra dangerous

Challenging, but attempt to establish uncertainty

Cause for despair, but there's a helping hand:

Cause for despair, but there's a helping hand:

Higher in E you go, fewer branches contribute

Cause for despair, but there's a helping hand:

Higher in E you go, fewer branches contribute

From 5 MeV onwards: \gtrsim 90% of flux with less than 50 branches

Sonzogni et al., 91 (2015) 011301

Picked 29 dominant forbidden transitions

U235 Spectral comparison with ILL data

> 50% in region of interest (4-7 MeV)

Picked (now >)29 dominant forbidden transitions, calculated shape factor in nuclear shell model

Picked (now >)29 dominant forbidden transitions, calculated shape factor in nuclear shell model

 $\frac{dN}{dE} \propto pE(E_0 - E)^2 F(Z, E)$ C(Z, E)Allowed: $C \approx 1$ As expected,
large spectral changes
LH *et al.*, PRC 99 (2019) 013301(R)

Spectral changes

Can we use knowledge of these transitions to say something about the other 3000?

Can we use knowledge of these transitions to say something about the other 3000?

Uniform behaviour for each ΔJ separately invites a parametrization

Can we use knowledge of these transitions to say something about the other 3000?

Uniform behaviour for each ΔJ separately invites a parametrization

Fit each calculated shape factor using simple polynomial, obtain distributions of correlated fit parameters for each ΔJ

Parametrization

Directly applicable to conversion method!

Forbidden spectral changes

Perform Monte Carlo sampling over **all** forbidden branches to propagate uncertainty into final calculation

Forbidden spectral changes

Perform Monte Carlo sampling over **all** forbidden branches to propagate uncertainty into final calculation

Look at difference in cumulative spectrum shapes

Large spectral changes for **all** actinides Monte Carlo allows for uncertainty estimation

Forbidden transitions & the bump

Use spectrum changes with Schreckenbach correspondence

Bump significantly mitigated, still further research

LH, J. Kostensalo, N. Severijns, J. Suhonen, PRC 99 (2019) 031301(R)

Conclusion

Strong progress can be made due to limited # transitions

Strong progress can be made due to limited # transitions

Shell model results show strong deviations, interest in other methods

Strong progress can be made due to limited # transitions

Shell model results show strong deviations, interest in other methods

Estimate uncertainty using Monte Carlo methods

Strong progress can be made due to limited # transitions

Shell model results show strong deviations, interest in other methods

Estimate uncertainty using Monte Carlo methods

Reactor bump is significantly mitigated, increased uncertainty weakens anomaly

Uncertainty estimation

Care only about shape, not absolute magnitude
Uncertainty estimation

Care only about shape, not absolute magnitude

Shape factor can have (significant) dependence on what value for $g_A^{e\!f\!f}$ is used

Uncertainty Estimation

Matrix elements

Up to first order, deal with 6 matrix elements

Up to first order, deal with 6 matrix elements

ΔJ	Matrix elements	Forbidden
0	$^{A}\mathcal{M}_{000}$	-
1	${}^{A}\mathcal{M}_{111}, {}^{A}\mathcal{M}_{121}, {}^{V}\mathcal{M}_{101}, {}^{A}\mathcal{M}_{110}$	0 ightarrow 0
2	$^{A}\mathcal{M}_{211}$	$0 \rightarrow 0, \frac{1}{2} \rightarrow \frac{1}{2}, 1 \rightarrow 0$

Behrens-Bühring notation: $V^{A}\mathcal{M}_{KLs}$

- s: timelike (0, scalar) or spacelike (1, vector)
- L: Angular momentum from multipole decomposition
- K: total J of operator $(|L s| \le K \le L + s)$

Up to first order, deal with 6 matrix elements

ΔJ	Matrix elements	Forbidden
0	$^{A}\mathcal{M}_{000}$	-
1	${}^{A}\mathcal{M}_{111}, {}^{A}\mathcal{M}_{121}, {}^{V}\mathcal{M}_{101}, {}^{A}\mathcal{M}_{110}$	0 ightarrow 0
2	$^{A}\mathcal{M}_{211}$	$0 \rightarrow 0, \frac{1}{2} \rightarrow \frac{1}{2}, 1 \rightarrow 0$

Behrens-Bühring notation: $V^{A}\mathcal{M}_{KLs}$

- s: timelike (0, scalar) or spacelike (1, vector)
- L: Angular momentum from multipole decomposition
- K: total J of operator $(|L s| \le K \le L + s)$

General: 1 dominant matrix element \rightarrow easy, $> 1 \rightarrow$ harder

Modern conversion analysis

Extrapolation & Virtual branches

How to construct these fictitious β branches?

Parametrised $\overline{Z}(E_0)$ fit with simple polynomial

P. Huber, PRC 84 (2011) 024617

Typical procedure

- 1. Make grid for E_0 in [2, 12] MeV
- 2. Every gridpoint $E_{0,i}$, choose $Z(E_{0,i})$
- 3. Assume allowed shape, extrapolate average nuclear matrix elements
- 4. Fit VB intensities to cumulative exp. spectrum

$$S(E_e) = \sum_i c_i S(E_e, \bar{Z}(E_{0,i}), E_{0,i})$$

5. Invert spectra using $E_{\nu} = E_0 - E_e$

Database contains much more information to use

Trivial extension to improve $(\alpha Z)^2$ behaviour, fixed weights

Database contains much more information to use

Trivial extension to improve $(\alpha Z)^2$ behaviour, fixed weights

Employ Machine Learning clustering algorithms to find better patterns

Nuclear β decays live in high-dimensional vector spaces

- *Z*, *A*
- Log *ft* values
- Branching Ratio, E_0 , daughter excitation
- $\Delta J^{\Delta \pi}$ (forbiddenness, unique)
- Initial and final deformation
- . . .

Nuclear β decays live in high-dimensional vector spaces

- *Z*, *A*
- Log *ft* values
- Branching Ratio, E_0 , daughter excitation
- $\Delta J^{\Delta \pi}$ (forbiddenness, unique)
- Initial and final deformation
- ...

Clusters in high dimensions are smeared in 2D projections

Clustering visualisation

Use dimensional reduction (t-SNE) to visualise results

Clear clusters, intercluster distance irrelevant here

Intercluster comparison

Example comparison for 3 clusters

Large differences visible for simple histograms!

How to combine these results?

Instead of a single $Z(E_0)$ fit, use Multidimensional Cluster Markov Chain Monte Carlo (MC³) How to combine these results?

Instead of a single $Z(E_0)$ fit, use Multidimensional Cluster Markov Chain Monte Carlo (MC³)

Build a distribution of anomaly \rightarrow better uncertainty estimate

For each E_0 bin, for each cluster, build sampling distribution

For each E_0 bin, for each cluster, build sampling distribution

Bayes' theorem:

 $P(\theta|d) \propto P(\theta)P(d|\theta)$

For each E_0 bin, for each cluster, build sampling distribution

Bayes' theorem:

```
P(\theta|d) \propto P(\theta)P(d|\theta)
```

Prior $(P(\theta))$: intrinsic probability for a β branch, fission yield \times BR Likelihood $(P(d|\theta))$: probability for point to belong to cluster

For each E_0 bin, for each cluster, build sampling distribution

Bayes' theorem:

```
P(\theta|d) \propto P(\theta)P(d|\theta)
```

Prior $(P(\theta))$: intrinsic probability for a β branch, fission yield \times BR Likelihood $(P(d|\theta))$: probability for point to belong to cluster

Modification of prior allows for compensation/study of pandemonium

Can couple directly to Monte Carlo estimates for forbidden corrections

Can couple directly to Monte Carlo estimates for forbidden corrections

Database driven, but must be careful about introduction of biases

Can couple directly to Monte Carlo estimates for forbidden corrections

Database driven, but must be careful about introduction of biases

Done correctly, realistic uncertainty & anomaly including correlations