# First-forbidden transitions in the reactor antineutrino anomaly 

Leendert Hayen

MEDEX'19, May 28th 2019

IKS, KU Leuven, Belgium

## Table of contents

Introduction

Experimental status

Theory status

Forbidden decays

Conclusion

Introduction

## Anomaly Introduction

What's it about in 3 steps:

Where is the anomaly?
Antineutrino's from $\beta^{-}$decay of reactor fission fragments

## Anomaly Introduction

## What's it about in 3 steps:

Where is the anomaly?
Antineutrino's from $\beta^{-}$decay of reactor fission fragments

What goes wrong?
2011: Measured $\# \bar{\nu}_{e}<$ predicted from $\beta$ decay 2014: Unexplained spectral distortion wrt theory

## Anomaly Introduction

## What's it about in 3 steps:

Where is the anomaly?
Antineutrino's from $\beta^{-}$decay of reactor fission fragments

What goes wrong?
2011: Measured $\# \bar{\nu}_{e}<$ predicted from $\beta$ decay
2014: Unexplained spectral distortion wrt theory

How should we interpret this?
Prediction error (mean, $\sigma$ ) or sterile neutrino's, something else

## Anomaly Introduction

## What's it about in 3 steps:

Where is the anomaly?
Antineutrino's from $\beta^{-}$decay of reactor fission fragments

What goes wrong?
2011: Measured $\# \bar{\nu}_{e}<$ predicted from $\beta$ decay
2014: Unexplained spectral distortion wrt theory

How should we interpret this?
Prediction error (mean, $\sigma$ ) or sterile neutrino's, something else

When new physics lurks, look out for quirks!

## Deficiency and particle physics proposal

Current deficiency in neutrino count rate at 94\% (2-3 $\sigma$ )
$P_{S B L}\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}\right) \simeq 1$


## Deficiency and particle physics proposal

Current deficiency in neutrino count rate at 94\% (2-3 $\sigma$ )
$P_{S B L}\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\alpha}\right) \simeq 1$


An et al. (Daya Bay Collab.), PRL 118 (2017) 251801 \& J. Kopp et al., JHEP 05 (2013) 050

## Antineutrino origin

Fission fragments from ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U},{ }^{239} \mathrm{Pu}$ and ${ }^{241} \mathrm{Pu}$ have many $\beta^{-}$ branches, but can only measure cumulative spectrum.


Conversion of all $\beta$ branches is tremendous challenge
A. A. Sonzogni et al., PRC 91 (2015) 011301(R)

## Reactor bump



Something not understood, most likely nuclear physics problem Hayes \& Vogel, ARNPS 66 (2016) 219

Experimental status

## Very short baseline experiments

Since 2011, ~ 10 experiments started setting up

## Very short baseline experiments

Since 2011, ~ 10 experiments started setting up

Very short ( $<10 \mathrm{~m}$ ) baseline experiments: measure oscillation directly

## Very short baseline experiments

Since 2011, $\sim 10$ experiments started setting up

Very short ( $<10 \mathrm{~m}$ ) baseline experiments: measure oscillation directly

Several experiments came online late 2017/2018! Published data from

- DANSS (Russia) 1804.04046
- STEREO (France) 1806.02096
- PROSPECT (USA) 1806.02784
- NEOS (Korea) 1610.05134

Very exciting \& more coming soon!


## VSBL Results: DANSS



## VSBL Results: PROSPECT



## VSBL Results: STEREO



Almazán et al. (STEREO) PRL 121 (2018) 161801

## Current status

Faced with some interesting developments:

1. 2011: Emergence of flux anomaly, sterile neutrinos?

## Current status

Faced with some interesting developments:

1. 2011: Emergence of flux anomaly, sterile neutrinos?
2. 2014: Appearance of 5 MeV bump

## Current status

Faced with some interesting developments:

1. 2011: Emergence of flux anomaly, sterile neutrinos?
2. 2014: Appearance of 5 MeV bump
3. 2017-: Very short baseline expts come online, see nothing consistent with original proposal

## Current status

Faced with some interesting developments:

1. 2011: Emergence of flux anomaly, sterile neutrinos?
2. 2014: Appearance of 5 MeV bump
3. 2017-: Very short baseline expts come online, see nothing consistent with original proposal
4. Also 2017: fuel dependencies in spectra

## Current status

Faced with some interesting developments:

1. 2011: Emergence of flux anomaly, sterile neutrinos?
2. 2014: Appearance of 5 MeV bump
3. 2017-: Very short baseline expts come online, see nothing consistent with original proposal
4. Also 2017: fuel dependencies in spectra

Things point to deficiencies in databases \& theoretical modeling

## Theory status

## Theory: $\beta$ participant sketch

Experiment sees nothing, what happens to theory?

## Theory: $\beta$ participant sketch

Experiment sees nothing, what happens to theory?
Nuclear $\beta$ decay is complicated


## Theory: $\beta$ participant sketch

Experiment sees nothing, what happens to theory?
Nuclear $\beta$ decay is complicated


Both greatly influence the spectrum shape!

## Theory: $\beta$ participant sketch

Experiment sees nothing, what happens to theory?
Nuclear $\beta$ decay is complicated


Both greatly influence the spectrum shape!

Additional lower order effects: Atomic, electrostatic, kinematic. . .
L.H. et al., Rev. Mod. Phys. 90 (2018) 015008

## Analysis procedure

Experimental benchmark are ILL (Schreckenbach) cumulative electron spectra

## Analysis procedure

Experimental benchmark are ILL (Schreckenbach) cumulative electron spectra

Approaches split up in 2:

1. Conversion method: virtual $\beta$ branch fits

## Analysis procedure

Experimental benchmark are ILL (Schreckenbach) cumulative electron spectra

Approaches split up in 2:

1. Conversion method: virtual $\beta$ branch fits
2. Summation method: Build from databases (\& extrapolate a la \#1)


Much of summation is based on same spectral assumptions Huber, PRC 84 (2011) 024617; Mueller et al., PRC 83 (2011) 054615

## Thoughts on state of the art

2 elements which require pause

## Thoughts on state of the art

2 elements which require pause

1. Central problem when comparing to ILL data

Everything below 1.8 MeV in electron spectrum is unconstrained, but ends up all over the antineutrino spectrum

## Thoughts on state of the art

2 elements which require pause

1. Central problem when comparing to ILL data

Everything below 1.8 MeV in electron spectrum is unconstrained, but ends up all over the antineutrino spectrum

Everything that changes the shape below 1.8 MeV changes the anomaly $\rightarrow$ essential to get this right

## Thoughts on state of the art

2 elements which require pause
2. Depending on method, questionable approximations

- Incorrectly estimates $(\alpha Z)^{n>1}$ effects, $\operatorname{RAA}\left(\langle Z\rangle^{n>1}\right) \neq$ $\left\langle\operatorname{RAA}\left(Z^{N>1}\right)\right\rangle$ !
- Estimated average $b / A c$ from spherical mirrors, but highly transition and deformation dependent
- All transitions assumed allowed/unique
- No Coulomb corrections to unique shape factors
- ...

An et al. (Daya Bay Collab.), PRL 118 (2017) 251801 \& Hayes et al., arXiv:1707.07728

Forbidden decays

## Forbidden shape factors

Roughly $\sim 30 \%$ of 8000 transitions are forbidden, usually assumed of negligible importance for anomaly

## Forbidden shape factors

Roughly $\sim 30 \%$ of 8000 transitions are forbidden, usually assumed of negligible importance for anomaly


Experimental region of interest ( $2-8 \mathrm{MeV}$ ) is dominated by forbidden decays LH, J. Kostensalo, N. Severijns, J. Suhonen, PRC 99 (2019) 031301(R)

## $\beta$ spectrum shape

Central element in analysis is knowledge of $\beta$ spectrum shape

$$
\frac{d N}{d W} \propto p W\left(W_{0}-W\right)^{2} F(Z, W) C(Z, W) \ldots
$$

## $\beta$ spectrum shape

Central element in analysis is knowledge of $\beta$ spectrum shape

$$
\frac{d N}{d W} \propto p W\left(W_{0}-W\right)^{2} F(Z, W) C(Z, W) \ldots
$$

(Almost) everything but shape factor, $C$, is under control

## $\beta$ spectrum shape

Central element in analysis is knowledge of $\beta$ spectrum shape

$$
\frac{d N}{d W} \propto p W\left(W_{0}-W\right)^{2} F(Z, W) C(Z, W) \ldots
$$

(Almost) everything but shape factor, $C$, is under control

Approximations in state-of-the-art for non-unique forbidden transitions

- Treat as allowed
- Treat as unique forbidden


## $\beta$ spectrum shape

Central element in analysis is knowledge of $\beta$ spectrum shape

$$
\frac{d N}{d W} \propto p W\left(W_{0}-W\right)^{2} F(Z, W) C(Z, W) \ldots
$$

(Almost) everything but shape factor, $C$, is under control

Approximations in state-of-the-art for non-unique forbidden transitions

- Treat as allowed
- Treat as unique forbidden
are ... not great


## Shape factor

General shape factor

$$
\begin{aligned}
C(Z, W)= & \sum_{k_{e}, k_{\nu}, K} \lambda_{k_{e}}\left\{M_{K}^{2}\left(k_{e}, k_{\nu}\right)+m_{K}^{2}\left(k_{e}, k_{\nu}\right)\right. \\
& \left.-\frac{2 \mu_{k_{e}} \gamma_{k_{e}}}{k_{e} W} M_{K}\left(k_{e}, k_{\nu}\right) m_{K}\left(k_{e}, k_{\nu}\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda_{k_{e}}=\frac{\alpha_{-k_{e}}^{2}+\alpha_{+k_{e}}^{2}}{\alpha_{-1}^{2}+\alpha_{+1}^{2}} \\
& \mu_{k_{e}}=\frac{\alpha_{-k_{e}}^{2}-\alpha_{+k_{e}}^{2}}{\alpha_{-k_{e}}^{2}+\alpha_{+k_{e}}^{2}} \frac{k_{e} W}{\gamma_{k_{e}}}
\end{aligned}
$$

are Coulomb functions of $\mathcal{O}(1)$
Behrens, Bühring, Electron radial wave functions, 1982

## First-forbidden transitions

Depending on spin-parity change, $C$ can be simple ( $R \sim 0.01$ )

$$
C_{0^{-}} \propto 1+\frac{2 R}{3 W} b+\mathcal{O}\left(\alpha Z R, W_{0} R^{2}\right)
$$

## First-forbidden transitions

Depending on spin-parity change, $C$ can be simple ( $R \sim 0.01$ )

$$
C_{0^{-}} \propto 1+\frac{2 R}{3 W} b+\mathcal{O}\left(\alpha Z R, W_{0} R^{2}\right)
$$

very difficult

$$
C_{1^{-}} \propto 1+a W+\mu_{1} \gamma_{1} \frac{b}{W}+c W^{2}
$$

## First-forbidden transitions

Depending on spin-parity change, $C$ can be simple ( $R \sim 0.01$ )

$$
C_{0^{-}} \propto 1+\frac{2 R}{3 W} b+\mathcal{O}\left(\alpha Z R, W_{0} R^{2}\right)
$$

very difficult

$$
C_{1^{-}} \propto 1+a W+\mu_{1} \gamma_{1} \frac{b}{W}+c W^{2}
$$

or rather simple, again

$$
C_{U} \propto \sum_{k=1}^{L} \lambda_{k} \frac{p^{2(k-1)} q^{2(L-k)}}{(2 k-1)![2(L-k)+1]!}
$$

## First-forbidden transitions

There are several complicating factors, however

- Coulomb corrections at all levels: Fermi function, higher $\kappa_{e}$ corrections, modified radial behaviour


## First-forbidden transitions

There are several complicating factors, however

- Coulomb corrections at all levels: Fermi function, higher $\kappa_{e}$ corrections, modified radial behaviour
- Expressions of previous slide are correct for pure transitions ( $\Delta J \leftrightarrow 0$ ), generally higher-order matrix elements contribute $(J \leftrightarrow J+\Delta J)$


## First-forbidden transitions

There are several complicating factors, however

- Coulomb corrections at all levels: Fermi function, higher $\kappa_{e}$ corrections, modified radial behaviour
- Expressions of previous slide are correct for pure transitions ( $\Delta J \leftrightarrow 0$ ), generally higher-order matrix elements contribute $(J \leftrightarrow J+\Delta J)$
- Very sensitive to nuclear structure, strong suppression makes cancellations extra dangerous


## First-forbidden transitions

There are several complicating factors, however

- Coulomb corrections at all levels: Fermi function, higher $\kappa_{e}$ corrections, modified radial behaviour
- Expressions of previous slide are correct for pure transitions ( $\Delta J \leftrightarrow 0$ ), generally higher-order matrix elements contribute $(J \leftrightarrow J+\Delta J)$
- Very sensitive to nuclear structure, strong suppression makes cancellations extra dangerous

Challenging, but attempt to establish uncertainty

## First-forbidden transitions

Cause for despair, but there's a helping hand:

## First-forbidden transitions

Cause for despair, but there's a helping hand:

Higher in $E$ you go, fewer branches contribute

## First-forbidden transitions

Cause for despair, but there's a helping hand:

Higher in $E$ you go, fewer branches contribute

From 5 MeV onwards: $\gtrsim 90 \%$ of flux with less than 50 branches

Sonzogni et al., 91 (2015) 011301

## Forbidden shape factors

Picked 29 dominant forbidden transitions

U235 Spectral comparison with ILL data

$>50 \%$ in region of interest $(4-7 \mathrm{MeV})$

## Forbidden shape factors

## Picked

(now $>$ )29 dominant forbidden transitions, calculated shape factor in nuclear shell model


## Forbidden shape factors

Picked
(now $>$ )29 dominant forbidden transitions, calculated shape factor in nuclear shell model
$\frac{d N}{d E} \propto p E\left(E_{0}-E\right)^{2} F(Z, E)$ $C(Z, E)$
Allowed: $C \approx 1$

As expected, large spectral changes

LH et al., PRC 99 (2019) 013301(R)


## Spectral changes



## Parametrization

Can we use knowledge of these transitions to say something about the other 3000 ?

## Parametrization

Can we use knowledge of these transitions to say something about the other 3000?

Uniform behaviour for each $\Delta J$ separately invites a parametrization

## Parametrization

Can we use knowledge of these transitions to say something about the other 3000?

Uniform behaviour for each $\Delta J$ separately invites a parametrization

Fit each calculated shape factor using simple polynomial, obtain distributions of correlated fit parameters for each $\Delta J$

## Parametrization

Construct conservative shape factor distributions for each $\Delta J$


Directly applicable to conversion method!

## Forbidden spectral changes

Perform Monte Carlo sampling over all forbidden branches to propagate uncertainty into final calculation

## Forbidden spectral changes

Perform Monte Carlo sampling over all forbidden branches to propagate uncertainty into final calculation

Look at difference in cumulative spectrum shapes


Large spectral changes for all actinides
Monte Carlo allows for uncertainty estimation

## Forbidden transitions \& the bump

Use spectrum changes with Schreckenbach correspondence


Bump significantly mitigated, still further research
LH, J. Kostensalo, N. Severijns, J. Suhonen, PRC 99 (2019) 031301(R)

Conclusion

## Conclusions

First forbidden transitions were shown to be dominant in region of interest

## Conclusions

First forbidden transitions were shown to be dominant in region of interest

Strong progress can be made due to limited \# transitions

## Conclusions

First forbidden transitions were shown to be dominant in region of interest

Strong progress can be made due to limited \# transitions

Shell model results show strong deviations, interest in other methods

## Conclusions

First forbidden transitions were shown to be dominant in region of interest

Strong progress can be made due to limited \# transitions

Shell model results show strong deviations, interest in other methods

Estimate uncertainty using Monte Carlo methods

## Conclusions

First forbidden transitions were shown to be dominant in region of interest

Strong progress can be made due to limited \# transitions

Shell model results show strong deviations, interest in other methods

Estimate uncertainty using Monte Carlo methods

Reactor bump is significantly mitigated, increased uncertainty weakens anomaly

## Uncertainty estimation

Care only about shape, not absolute magnitude

## Uncertainty estimation

Care only about shape, not absolute magnitude

Shape factor can have (significant) dependence on what value for $g_{A}^{e f f}$ is used


## Uncertainty Estimation



## Matrix elements

Up to first order, deal with 6 matrix elements

## Matrix elements

Up to first order, deal with 6 matrix elements

| $\Delta J$ | Matrix elements | Forbidden |
| :---: | :---: | :---: |
| 0 | ${ }^{A} \mathcal{M}_{000}$ | - |
| 1 | ${ }^{A} \mathcal{M}_{111},{ }^{A} \mathcal{M}_{121},{ }^{V} \mathcal{M}_{101},{ }^{A} \mathcal{M}_{110}$ | $0 \rightarrow 0$ |
| 2 | ${ }^{A} \mathcal{M}_{211}$ | $0 \rightarrow 0, \frac{1}{2} \rightarrow \frac{1}{2}, 1 \rightarrow 0$ |

Behrens-Bühring notation: ${ }^{V / A} \mathcal{M}_{K L s}$

- $s$ : timelike ( 0, scalar) or spacelike ( 1, vector)
- L: Angular momentum from multipole decomposition
- K: total $J$ of operator $(|L-s| \leq K \leq L+s)$


## Matrix elements

Up to first order, deal with 6 matrix elements

| $\Delta J$ | Matrix elements | Forbidden |
| :---: | :---: | :---: |
| 0 | ${ }^{A} \mathcal{M}_{000}$ | - |
| 1 | ${ }^{A} \mathcal{M}_{111},{ }^{A} \mathcal{M}_{121},{ }^{V} \mathcal{M}_{101},{ }^{A} \mathcal{M}_{110}$ | $0 \rightarrow 0$ |
| 2 | ${ }^{A} \mathcal{M}_{211}$ | $0 \rightarrow 0, \frac{1}{2} \rightarrow \frac{1}{2}, 1 \rightarrow 0$ |

Behrens-Bühring notation: ${ }^{V / A} \mathcal{M}_{K L s}$

- $s$ : timelike ( 0, scalar) or spacelike ( 1, vector)
- L: Angular momentum from multipole decomposition
- K: total $J$ of operator $(|L-s| \leq K \leq L+s)$

General: 1 dominant matrix element $\rightarrow$ easy, $>1 \rightarrow$ harder

## Modern conversion analysis

## Extrapolation \& Virtual branches

How to construct these fictitious $\beta$ branches?


Parametrised $\bar{Z}\left(E_{0}\right)$ fit with simple polynomial
P. Huber, PRC 84 (2011) 024617

## Extrapolation \& Virtual branches

Typical procedure

1. Make grid for $E_{0}$ in $[2,12] \mathrm{MeV}$
2. Every gridpoint $E_{0, i}$, choose $Z\left(E_{0, i}\right)$
3. Assume allowed shape, extrapolate average nuclear matrix elements
4. Fit VB intensities to cumulative exp. spectrum

$$
S\left(E_{e}\right)=\sum_{i} c_{i} S\left(E_{e}, \bar{Z}\left(E_{0, i}\right), E_{0, i}\right)
$$

5. Invert spectra using $E_{\nu}=E_{0}-E_{e}$

## Database extrapolation

Database contains much more information to use

Trivial extension to improve
$(\alpha Z)^{2}$ behaviour, fixed weights


## Database extrapolation

Database contains much more information to use

Trivial extension to improve
$(\alpha Z)^{2}$ behaviour, fixed weights

Employ
Machine Learning clustering algorithms to find better patterns


## Clustering \& Machine Learning

Nuclear $\beta$ decays live in high-dimensional vector spaces

- Z, $A$
- Log ft values
- Branching Ratio, $E_{0}$, daughter excitation
- $\Delta J^{\Delta \pi}$ (forbiddenness, unique)
- Initial and final deformation
- ...


## Clustering \& Machine Learning

Nuclear $\beta$ decays live in high-dimensional vector spaces

- Z, $A$
- Log ft values
- Branching Ratio, $E_{0}$, daughter excitation
- $\Delta J^{\Delta \pi}$ (forbiddenness, unique)
- Initial and final deformation

Clusters in high dimensions are smeared in 2D projections

## Clustering visualisation

Use dimensional reduction (t-SNE) to visualise results


Clear clusters, intercluster distance irrelevant here

## Intercluster comparison

Example comparison for 3 clusters





## Monte Carlo sampling

How to combine these results?

Instead of a single $Z\left(E_{0}\right)$ fit, use
Multidimensional Cluster Markov Chain Monte Carlo $\left(\mathrm{MC}^{3}\right)$

## Monte Carlo sampling

How to combine these results?

Instead of a single $Z\left(E_{0}\right)$ fit, use
Multidimensional Cluster Markov Chain Monte Carlo (MC ${ }^{3}$ )

Build a distribution of anomaly $\rightarrow$ better uncertainty estimate

## Virtual $\beta$ branch creation

## Procedure:

For each $E_{0}$ bin, for each cluster, build sampling distribution

## Virtual $\beta$ branch creation

## Procedure:

For each $E_{0}$ bin, for each cluster, build sampling distribution

Bayes' theorem:

$$
P(\theta \mid d) \propto P(\theta) P(d \mid \theta)
$$

## Virtual $\beta$ branch creation

## Procedure:

For each $E_{0}$ bin, for each cluster, build sampling distribution

Bayes' theorem:

$$
P(\theta \mid d) \propto P(\theta) P(d \mid \theta)
$$

Prior $(P(\theta))$ : intrinsic probability for a $\beta$ branch, fission yield $\times \mathrm{BR}$
Likelihood $(P(d \mid \theta))$ : probability for point to belong to cluster

## Virtual $\beta$ branch creation

## Procedure:

For each $E_{0}$ bin, for each cluster, build sampling distribution

Bayes' theorem:

$$
P(\theta \mid d) \propto P(\theta) P(d \mid \theta)
$$

Prior $(P(\theta))$ : intrinsic probability for a $\beta$ branch, fission yield $\times B R$
Likelihood $(P(d \mid \theta))$ : probability for point to belong to cluster

Modification of prior allows for compensation/study of pandemonium

## $M C^{3}$ moving forward

> Clusters contain nuclear structure information, can stochastically deduce matrix element corrections Also relevant for ab initio approach!

## $M C^{3}$ moving forward

Clusters contain nuclear structure information, can stochastically deduce matrix element corrections
Also relevant for ab initio approach!

Can couple directly to Monte Carlo estimates for forbidden corrections

## $M^{3}$ moving forward

Clusters contain nuclear structure information, can stochastically deduce matrix element corrections Also relevant for ab initio approach!

Can couple directly to Monte Carlo estimates for forbidden corrections

Database driven, but must be careful about introduction of biases

## $M^{3}$ moving forward

Clusters contain nuclear structure information, can stochastically deduce matrix element corrections
Also relevant for ab initio approach!

Can couple directly to Monte Carlo estimates for forbidden corrections

Database driven, but must be careful about introduction of biases

Done correctly, realistic uncertainty \& anomaly including correlations

