MEDEX '19, Prague, May 27-31 2019

EFT approach to neutrino-less double beta decay

Vincenzo Cirigliano Los Alamos National Laboratory

Outline

- "End-to-end" Effective Field Theory (EFT) framework for Lepton Number Violation (LNV) and $0\nu\beta\beta$ and its benefits
- $0\nu\beta\beta$ from light Majorana ν exchange mechanism
- $0\nu\beta\beta$ from (multi)TeV-scale dynamics [if time permits]

Special thanks to collaborators: W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck, A. Walker-Loud EFT framework for LNV and neutrino-less double beta decay

• Ton-scale $0 \vee \beta \beta$ searches $(T_{1/2} > 10^{27-28} \text{ yr})$ will probe at unprecedented levels LNV from a variety of mechanisms

• Ton-scale $0\nu\beta\beta$ searches (T_{1/2} > 10^{27-28} yr) will probe at unprecedented levels LNV from a variety of mechanisms

• Ton-scale $0\nu\beta\beta$ searches (T_{1/2} > 10^{27-28} yr) will probe at unprecedented levels LNV from a variety of mechanisms

• Ton-scale $0\nu\beta\beta$ searches (T_{1/2} > 10^{27-28} yr) will probe at unprecedented levels LNV from a variety of mechanisms

• Ton-scale $0\nu\beta\beta$ searches (T_{1/2} > 10^{27-28} yr) will probe at unprecedented levels LNV from a variety of mechanisms

Impact of 0vββ searches most efficiently analyzed in a BSM-EFT framework, encompassing a large class of underlying models

Hadronization of resulting quarklevel operators is most efficiently and rigorously achieved using chiral EFT techniques

• Ton-scale $0\nu\beta\beta$ searches (T_{1/2} > 10^{27-28} yr) will probe at unprecedented levels LNV from a variety of mechanisms

Impact of 0vββ searches most efficiently analyzed in a BSM-EFT framework, encompassing a large class of underlying models

Hadronization of resulting quarklevel operators is most efficiently and rigorously achieved using chiral EFT techniques

"End-to-end" EFT framework: connecting LNV scale Λ to nuclear scales, with controllable uncertainties

EFT framework for $0\nu\beta\beta$

EFT framework for $0\nu\beta\beta$

EFT framework for $0\nu\beta\beta$

lattice QCD & many-body methods

 $T_{1/2} \begin{bmatrix} \widetilde{C}_i \begin{bmatrix} C_j \end{bmatrix} \end{bmatrix} \sim (m_W / \Lambda)^A (\Lambda_X / m_W)^B (k_F / \Lambda_X)^C$

0vββ from light Majorana neutrino (dim-5 operator)

Effective Lagrangian just below the weak scale

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}} - \frac{4G_F}{\sqrt{2}} V_{ud} \,\bar{u}_L \gamma^\mu d_L \,\bar{e}_L \gamma_\mu \nu_{eL} - \frac{m_{\beta\beta}}{2} \,\nu_{eL}^T C \nu_{eL} + \text{H.c.}$$

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729, Phys.Rev. C97 (2018) no.6, 065501

LNV hadronic amplitudes such as nn → ppee receive contributions from broad range of neutrino virtual momenta (q)

Chiral EFT captures contributions from all momentum regions

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729, Phys.Rev. C97 (2018) no.6, 065501

"Hard neutrinos":
E,
$$|\mathbf{q}| > \Lambda_X \sim m_N \sim \text{GeV}$$

Short-range $\Delta L=2$ operators at the hadronic level, still proportional to $m_{\beta\beta}$

Non-local "Neutrino potential" (long- and pion-range) mediating nn→pp

Anatomy of $0\nu\beta\beta$ amplitude

Figure adapted from Primakoff-Rosen 1969

Hard, soft, and potential V

$$\mathbf{V}_{\mathbf{l=2}} = \sum_{a \neq b} \left(V_{\nu,0}^{(a,b)} + V_{\nu,2}^{(a,b)} + \dots \right)$$

$$V_v \sim 1/Q^2$$
, $1/(\Lambda_X)^2$, ...

LO N²LO

Anatomy of $0\nu\beta\beta$ amplitude

Figure adapted from Primakoff-Rosen 1969

Hard, soft, and potential ν

Ultrasoft V

$$\mathbf{V}_{l=2} = \sum_{a \neq b} \left(V_{\nu,0}^{(a,b)} + V_{\nu,2}^{(a,b)} + \dots \right)$$

$$V_v \sim 1/Q^2$$
, $1/(\Lambda_X)^2$, ...
 \uparrow \uparrow
LO N²LO

Loop calculable in terms of $E_n - E_i$ and $f ||_{\mu}|n > n||^{\mu}|i>$, that also control $2\nu\beta\beta$. Contributes to the amplitude at N²LO

EFT justifies the "closure approximation" and quantifies corrections to it

Leading order 0vBB potential

• Tree-level exchange of Majorana neutrinos

$$V_{\nu,0}^{(a,b)} = \tau^{(a)+}\tau^{(b)+}\left\{\frac{1}{\mathbf{q}^2}\left\{1 - g_A^2\left[\sigma^{(a)}\cdot\sigma^{(b)} - \sigma^{(a)}\cdot\mathbf{q}\,\sigma^{(b)}\cdot\mathbf{q}\,\frac{2m_\pi^2 + \mathbf{q}^2}{(\mathbf{q}^2 + m_\pi^2)^2}\right]\right\} \quad \begin{array}{l} \text{Hadronic} \\ \text{input: } \mathbf{g}_A \end{array}$$

Leading order 0vBB potential

Tree-level exchange of Majorana neutrinos

$$V_{\nu,0}^{(a,b)} = \tau^{(a)+}\tau^{(b)+}\left\{\frac{1}{\mathbf{q}^2}\left\{1 - g_A^2\left[\sigma^{(a)} \cdot \sigma^{(b)} - \sigma^{(a)} \cdot \mathbf{q} \,\sigma^{(b)} \cdot \mathbf{q} \,\frac{2m_\pi^2 + \mathbf{q}^2}{(\mathbf{q}^2 + m_\pi^2)^2}\right]\right\} \quad \begin{array}{l} \text{Hadronic} \\ \text{input: } \mathbf{g}_{\mathsf{A}} \end{array}$$

• Symmetries allow one to write down a contact term

$$V_{\nu,CT}^{(a,b)} = -2 \, \mathbf{g}_{\nu} \, \tau^{(a)+} \tau^{(b)+}$$

 $g_{v} \sim 1/(4\pi F_{\pi})^{2}$ in NDA / Weinberg counting (and hence sub-leading) But is it?

Weinberg 1991, Kaplan-Savage-Wise 1996

 Study nn→ppee amplitude (in ¹S₀ channel) with LO strong potential

Weinberg 1991, Kaplan-Savage-Wise 1996

 Study nn→ppee amplitude (in ¹S₀ channel) with LO strong potential

 $\tilde{C} \sim 4\pi/(m_N Q) \sim 1/F_{\pi^2}$ from fit to a_{NN}

Weinberg 1991, Kaplan-Savage-Wise 1996

 Study nn→ppee amplitude (in ¹S₀ channel) with LO strong potential

 $\tilde{C} \sim 4\pi/(m_N Q) \sim 1/F_{\pi^2}$ from fit to a_{NN}

Weinberg 1991, Kaplan-Savage-Wise 1996

 Study nn→ppee amplitude (in ¹S₀ channel) with LO strong potential

 $\tilde{C} \sim 4\pi/(m_N Q) \sim 1/F_{\pi^2}$ from fit to a_{NN}

Weinberg 1991, Kaplan-Savage-Wise 1996

 Study nn→ppee amplitude (in ¹S₀ channel) with LO strong potential

 $\tilde{C} \sim 4\pi/(m_N Q) \sim 1/F_{\pi^2}$ from fit to a_{NN}

• Renormalization requires contact LNV operator at LO!

• The coupling flows to $g_v \sim 1/F_{\pi^2} >> 1/(4\pi F_{\pi})^2$, same order as $1/q^2$ from tree-level neutrino exchange

If you don't like Feynman diagrams...

- Same conclusion obtained by solving the Schroedinger equation
 - Use smeared delta function to regulate short range strong potential: $\widetilde{C} \rightarrow \widetilde{C} (R_S) \sim I/F_{\pi}^2$
 - Compute amplitude

 $\delta^{(3)}(\mathbf{r}) \to \frac{1}{\pi^{3/2} R_s^3} e^{-\frac{r}{R_s^2}}$

Scattering states "fully correlated" according to the leading order strong potential in the ¹S₀ channel

If you don't like Feynman diagrams...

- Same conclusion obtained by solving the Schroedinger equation
 - Use smeared delta function to regulate short range strong potential: $\widetilde{C} \rightarrow \widetilde{C} (R_S) \sim I/F_{\pi}^2$
 - Compute amplitude

$$\mathcal{A}_{\nu} = \int d^3 \mathbf{r} \ \psi_{\mathbf{p}'}^{-}(\mathbf{r}) V_{\nu,0}(\mathbf{r}) \psi_{\mathbf{p}}^{+}(\mathbf{r})$$

 $\delta^{(3)}(\mathbf{r}) \to \frac{1}{\pi^{3/2} R_c^3} e^{-\frac{r^2}{R_S^2}}$

• Logarithmic dependence on $R_s \Rightarrow$

need LO counterterm $g_{\nu} \sim I/F_{\pi}^2 \log R_S$ to obtain physical, regulatorindependent result

Estimating finite part of g_{ν}

• Long term: compute nn→pp in lattice QCD and match to EFT

Estimating finite part of g_{ν}

- Long term: compute nn→pp in lattice QCD and match to EFT
- Chiral symmetry relates g_v to one of two I=2 EM LECs (hard γ 's vs V's)

Estimating finite part of g_{ν}

- Long term: compute nn \rightarrow pp in lattice QCD and match to EFT
- Chiral symmetry relates g_v to one of two I=2 EM LECs (hard γ 's vs V's)

$0\nu\beta\beta$ vs EM isospin breaking

- NN observables cannot disentangle C_1 from C_2 (need pions), but provide data-based estimate of C_1+C_2
- C₁ + C₂ controls CIB combination of ¹S₀ scattering lengths a_{nn} + a_{pp} - 2 a_{np}
- Fit to data, including Coulomb potential, pion EM mass splitting, and contact terms confirms the scaling $C_1 + C_2 \sim 1/F_{\pi^2} >> 1/(4\pi F_{\pi})^2$

$0\nu\beta\beta$ vs EM isospin breaking

- NN observables cannot disentangle C_1 from C_2 (need pions), but provide data-based estimate of C_1+C_2
- C₁ + C₂ controls CIB combination of ¹S₀ scattering lengths a_{nn} + a_{pp} - 2 a_{np}
- Fit to data, including Coulomb potential, pion EM mass splitting, and contact terms confirms the scaling $C_1 + C_2 \sim 1/F_{\pi}^2 >> 1/(4\pi F_{\pi})^2$

The EFT analysis survives comparison with data!

The analog of $e^2(C_1+C_2)$ is included in all high-quality potentials (AV18, CD-Bonn, chiral, ...)

Guesstimating numerical impact

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1906.xxxxx

Assume $g_v \sim (C_1 + C_2)/2$ with $(C_1 + C_2)$ taken from fit to NN data

Evaluate impact in light nuclei using Variational Monte Carlo, with wavefunctions corresponding to the Norfolk chiral potential [1606.06335]

> g_v contribution sizable in $\Delta I=2$ transition (due to node): for A=12, A_S/A_L = 0.75

Guesstimating numerical impact

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1906.xxxxx

Assume $g_v \sim (C_1 + C_2)/2$ with $(C_1 + C_2)$ taken from fit to NN data

Evaluate impact in light nuclei using Variational Monte Carlo, with wavefunctions corresponding to the Norfolk chiral potential [1606.06335]

> g_v contribution sizable in $\Delta I=2$ transition (due to node): for A=12, A_S/A_L = 0.75

Transitions of experimental interest (⁷⁶Ge \rightarrow ⁷⁶Se, ...) have $\Delta I=2$ (and node) \Rightarrow expect significant effect!

Strategies to determine g_{ν}

- Long term → (I) Lattice QCD;
 (2) Processes sensitive to I=2 interactions with pions and nucleons (get C₁ and C₂)
- Short term → explore methods to evaluate the forward amplitude W⁺(q)nn
 → W⁻(q)pp for a broad range of q

 Experimental input on (C₁+C₂) from CIB in NN scattering can be used to validate the method

$N^2LO 0\nu\beta\beta$ potential

• Known factorizable corrections to 1-body currents (radii, ...)

• New non-factorizable contributions to $V_{\nu,2} \sim V_{\nu,0} (k_F/4\pi F_\pi)^2 [\pi-N \text{ loops}]$ and <u>new contact terms</u>]

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• 2-body x 1-body current (and <u>another contact</u>...)

Wang-Engel-Yao 1805.10276

$N^2LO 0\nu\beta\beta$ potential

Calculations of these effects in light and heavy nuclei show O(10%) corrections

• New non-factorizable contributions to $V_{\nu,2} \sim V_{\nu,0} (k_F/4\pi F_\pi)^2 [\pi-N loops$ and <u>new contact terms]</u>

S. Pastore, J. Carlson, V.C., W. Dekens, E. Mereghetti, R. Wiringa 1710.05026

V.C., J. Engel, E. Mereghetti, in preparation

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• 2-body x 1-body current (and <u>another contact</u>...)

Wang-Engel-Yao 1805.10276

Ultrasoft neutrino contributions

Figure adapted from Primakoff-Rosen 1969

$$T_{\text{usoft}}(\mu_{\text{us}}) = \frac{T_{\text{lept}}}{8\pi^2} \sum_{n} \langle f|J_{\mu}|n\rangle \langle n|J^{\mu}|i\rangle \left\{ (E_2 + E_n - E_i) \left(\log \frac{\mu_{\text{us}}}{2(E_2 + E_n - E_i)} + 1 \right) + 1 \leftrightarrow 2 \right\}$$

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

- Ultrasoft V's couple to nuclear states: sensitivity to $E_n E_i$ and $\langle f ||\mu|n \rangle \langle n||\mu|i \rangle$ that also determine $2\nu\beta\beta$ amplitude
- $T_{usoft}/T_0 \sim (E_n E_i)/(4\pi k_F) \rightarrow N2LO$ contribution
- μ_{us} dependence cancels with $V_{\nu,2}$: consistency check

0vββ from multi-TeV scale dynamics (dim-7, 9, ...operators)

Classifying contributions

Vergatos 1982, Faessler, Kovalenko, Simkovic, Schweiger 1996 Prezeau, Ramsey-Musolf, Vogel hep-ph/0303205

Naive dimensional analysis $\rightarrow V_{\pi\pi}$ dominates for all but one operator

Vergatos 1982, Faessler, Kovalenko, Simkovic, Schweiger 1996 Prezeau, Ramsey-Musolf, Vogel hep-ph/0303205

- Two recent developments:
 - ΠΠ matrix elements now precisely know via direct and indirect lattice QCD calculations

Nicholson et al., 1805/02634

- Two recent developments:
 - ΠΠ matrix elements now precisely know via direct and indirect lattice QCD calculations

- Two recent developments:
 - 2. Renormalization $\rightarrow V_{\pi\pi}$ and V_{NN} are both leading order

What scales are being probed?

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1806.02780

Bounds reflect dependence on Λ_{χ} / Λ and Q/ Λ_{χ}

Conclusions & Outlook

- Ton-scale $0\nu\beta\beta$ searches will probe LNV from a broad variety of mechanisms high discovery potential, far reaching implications
- EFT approach provides a general framework to:
 - I. Relate $0\nu\beta\beta$ to underlying LNV dynamics (and collider & cosmology)
 - 2. Organize contributions to hadronic and nuclear matrix elements
 - Identified new leading order short-range contributions
 - Implications for $m_{\beta\beta}$ not yet clear (size of g_{ν} & relative sign)

Improving the theory uncertainty is challenging, but there are exciting prospects thanks to advances in EFT, lattice QCD, and nuclear structure

Backup

Estimating finite part of g_v (v2)

- Long term: compute nn→pp in lattice QCD and match to EFT
- Chiral symmetry relates g_v to one of two I=2 EM LECs (hard γ 's vs V's)

EFT-based master formula

• Framework to interpret experiments in terms of high-scale LNV sources

EFT-based master formula

• Framework to interpret experiments in terms of high-scale LNV sources

EFT-based master formula

• Framework to interpret experiments in terms of high-scale LNV sources

A leptoquark example

• Dim-5 ($m_{\beta\beta}$) + Dim-7 operator (leptoquark-induced)

 $\mathcal{C}_{LL\bar{Q}uH} \epsilon_{ij} \left(\bar{Q}_m u \right) \left(L_m^T C L_i \right) H_j$

• Same leptonic structure as in V_M exchange: can cancel $m_{\beta\beta}$!!

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1708.09390

A leptoquark example

• Dim-5 ($m_{\beta\beta}$) + Dim-7 operator (leptoquark-induced)

• Same leptonic structure as in V_M exchange: can cancel $m_{\beta\beta}$!!

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1708.09390

Left-Right symmetric model example

• Generates ops. at dim-5 (m_{ββ}) + dim-7 & dim-9

Chirally enhanced for $(\xi \neq 0)$

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1806.02780

Left-Right symmetric model example

- Generates ops. at dim-5 (m_{ββ}) + dim-7 & dim-9
- Dim-9 contribution can be dominant in NH

Illustrative LHC-safe parameters

 $m_{W_R} = 4.5 \text{ TeV}$ $m_{\Delta_R} = 10 \text{ TeV}$ $m_{\nu_R} = O(10 \text{ TeV})$ $U_R = U_{\text{PMNS}}$

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1806.02780