Precise measurement of two-neutrino double-beta decay of <sup>100</sup>Mo with Li<sub>2</sub>MoO<sub>4</sub> low temperature detectors: preliminary results

**Fedor Danevich** 

Institute for Nuclear Research, Kyiv, Ukraine

on behalf of the CUPID-Mo collaboration\*

and

#### Jenni Kotila

Finnish Institute for Educational Research, University of Jyväskylä, Finland

\* The data here reported belong to the CUPID-Mo collaboration. However, the  $2\nu 2\beta$  analysis has not been finalized at the collaboration level yet, therefore all the  $2\nu 2\beta$  results have to be considered as a personal elaboration of the speaker

1/15 F.A.Danevich Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo MEDEX 2019, 27-31 May 2019, Prague

# **CUPID-Mo collaboration**

CSNSM, France CEA/DRF, France **IPNL**, France LAL, France KIT, Germany INFN, LNGS, Italy KINR, Ukraine JINR, Russia ITEP, Russia NIIC, Russia MIT, US UCB/LBNL, US CUPID-China, P.R. China





Léon Perrault (1832–1908) Les flèches de Cupidon \*)

CUPID-Mo is an important milestone in the framework of the CUPID R&D activities and will provide essential elements for the choice of the CUPID technique, by clarifying the merits and the drawbacks of the <sup>100</sup>Mo option. A final goal is  $0v2\beta$  decay of <sup>100</sup>Mo.

\*) Disclaimer: It is neither an official CUPID nor CUPID-Mo logo, I just like this painting...

# Experiment

### Li<sub>2</sub><sup>100</sup>MoO<sub>4</sub> scintillators



#### Detectors assembling

## enrLMOs LMO1b Ge LD CMO2b Ge LD LMO2t Ge LD LMO2t Ge LD CMO2t Ge LD

EDELWEISS-III set-up at the Modane Underground Laboratory, 4800 m of water equivalent



 $Li_2^{100}MoO_4$  crystal scintillators used in the experiment (enrichment 96.9 ± 0.2 %)

| Crystal mass (g), Num<br>size (mm) nucl | Number of <sup>100</sup> Mo | Live time (h) |          |
|-----------------------------------------|-----------------------------|---------------|----------|
|                                         | nuclei                      | Set-up 1      | Set-up 2 |
| 185.86, Ø43.6×40.0                      | 6.103×10 <sup>23</sup>      | 1331.03       | 1000.58  |
| 203.72, Ø43.6×44.2                      | 6.689×10 <sup>23</sup>      |               | 997.64   |
| 212.61, Ø43.9×45.6                      | 6.981×10 <sup>23</sup>      |               | 1037.92  |
| 206.68, Ø43.9×44.5                      | 6.787×10 <sup>23</sup>      |               | 756.59   |

3/15

F.A.Danevich

Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo MEDEX 2019, 27-31 May 2019, Prague

# Li<sub>2</sub><sup>100</sup>MoO<sub>4</sub> detectors performance

Li<sub>2</sub>MoO<sub>4</sub> scintillation bolometers were first proposed in [1] and developed by the LUMINEU project [2]



• High energy resolution 5-7 keV at 2615 keV



- Excellent particle discrimination ( $DP_{\alpha/\beta} \sim 9 18$ )
- High radio-purity (< 3 μBq/kg of <sup>228</sup>Th and <sup>226</sup>Ra,
   <5 μBq/kg of <sup>238</sup>U) [3]
- The established technology of Li<sub>2</sub><sup>100</sup>MoO<sub>4</sub> crystal growth (high yield of crystal boule: > 80%, low irrecoverable losses: ~2-3%, recovery of <sup>100</sup>Mo)



F.A.Danevich Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo MEDEX 2019, 27-31 May 2019, Prague

# Experimental energy spectra



• The contributions of external  $\gamma$  from <sup>226</sup>Ra and <sup>228</sup>Th can be estimated from  $\gamma$  peaks of <sup>212</sup>Pb, <sup>214</sup>Pb, <sup>214</sup>Bi, <sup>208</sup>Tl

5/15

• The 1462.8 keV peak is due to potassium in the crystals and in the set-up (since the peak is widened)

F.A.Danevich Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo MEDEX 2019, 27-31 May 2019, Prague

# Background model



The sum 1013.64 kg×h energy spectrum was fitted in (100-1100) keV – (2300-3000) keV by the following model:

- $2\nu 2\beta$  decay to the ground state
- 2v2β decay to the first 0<sup>+</sup> excited level of <sup>100</sup>Ru

 $T_{\frac{1}{2}}^{2\nu_2\beta}(0_1) = (7.5 \pm 0.8) \times 10^{20} \text{ yr} [1]$ 

- Internal <sup>40</sup>K, <sup>90</sup>Sr <sup>90</sup>Y, <sup>87</sup>Rb
- External <sup>40</sup>K, <sup>228</sup>Ra, <sup>228</sup>Th, <sup>226</sup>Ra, <sup>210</sup>Pb

The model describes the experimental data with  $\chi^2/n.d.f. = 0.79 - 1.17$ 

[1] R. Arnold et al., NPA 925 (2014) 25



- 1<sup>+</sup> intermediate state dominates the  $2\nu 2\beta$ -decay. This is so called the single-state dominance hypothesis (SSD), in contrast to the high-state dominance (HSD) [2]. "<sup>100</sup>Mo is one of the few cases where the SSD may have some merit" [3]
  - 0.001 1000
- The HSD model is excluded with high confidence by the NEMO-3, while the SSD model is consistent with the data [4]
- We have used SSD spectrum to estimate the  $T_{1/2}$

[1] J. Abad et al., Ann. Fis. A 80 (1984) 9 [2] P. Domin et al., Nucl. Phys. A 735 (2005) 337

[3] F. lachello, private communication [4] R. Arnold et al., Eur. Phys. J. C 79 (2019) 440 300

300

7/15

2000

F.A.Danevich Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo MEDEX 2019, 27-31 May 2019, Prague

# The half-life



# Estimation of the background model error by using the experimental data



The difference between the  $T_{1/2}$  from the data of the set-up 1 and 2 is  $0.12 \times 10^{18}$  yr, consistent with the error  $0.086 \times 10^{18}$  yr obtained from the fit of the sum spectrum

F.A.Danevich Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo MEDEX 2019, 27-31 May 2019, Prague

9/15

# Estimated systematic uncertainties (%)

|        | Number of <sup>100</sup> Mo nuclei                                                                                |                |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------|----------------|--|--|
|        | Live time                                                                                                         | ±0.22          |  |  |
|        | Pulse-shape discrimination cut to accept $\boldsymbol{\beta}$ events                                              | ±0.60          |  |  |
|        | Localization of radioactivity in the set-up                                                                       | ±0.85          |  |  |
|        | Interval of fit                                                                                                   | +0.80<br>-0.86 |  |  |
|        | Monte Carlo simulated models statistic                                                                            | ±1             |  |  |
|        | Energy scale instability                                                                                          | ±0.46          |  |  |
|        | $2\nu 2\beta$ spectral shape                                                                                      | ±1             |  |  |
|        | Mechanism of decay (HSD instead of SSD)                                                                           | +0.14          |  |  |
|        | Total systematic error                                                                                            |                |  |  |
|        | Statistical error                                                                                                 | ±1.05          |  |  |
|        | Total error                                                                                                       | +2.27<br>-2.29 |  |  |
| minary | $T_{1/2}^{2\nu_2\beta} = [6.988 \pm 0.074(\text{stat})^{+0.141}_{-0.142}(\text{syst})] \times 10^{18} \text{ yr}$ |                |  |  |
| preli  | $T_{1/2}^{2\vee 2\beta} = (6.99 \pm 0.16) \times 10^{18} \text{ yr}$                                              |                |  |  |

$$T_{1/2}^{2\vee 2\beta} = (6.99 \pm 0.16) \times 10^{18} \,\mathrm{yr}$$

MEDEX 2019, 27-31 May 2019, Prague

# Comparison with other <sup>100</sup>Mo experiments



F.A.Danevich Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo

MEDEX 2019, 27-31 May 2019, Prague

# Comparison with $T_{1/2}$ for other $2\beta^{-}$ nuclei



[1] A. Caminata et al., Universe 5 (2019) 10 (Conf. Proc.)
[2] J.B. Albert et al., Phys. Rev. C 89 (2014) 015502
[3] A. Gando et al., Phys. Rev. Lett. 117 (2016) 082503
[4] M. Agostini et al., Eur. Phys. J. C 75 (2015) 416
[5] A.S. Barabash et al., Phys. Rev. D 98 (2018) 092007

[6] R. Arnold et al., Eur. Phys. J. C 78 (2018) 821
[7] R. Arnold et al., Phys. Rev. D 94 (2016) 072003
[8] J. Argyriades et al., Nucl. Phys. A 847 (2010) 168
[9] A.S. Barabash et al., Nucl. Phys. A 935 (2015) 52 12 /15

F.A.Danevich

Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo

MEDEX 2019, 27-31 May 2019, Prague

# The actual half-life of <sup>100</sup>Mo

Taking into account that <sup>100</sup>Mo nuclei decay by the two modes: to the ground state and to the first O<sup>+</sup> excited level of <sup>100</sup>Ru, the actual half-life of <sup>100</sup>Mo (using the most accurate measurement of the decay of <sup>100</sup>Mo to the first O<sup>+</sup> 1130.3 keV excited level of <sup>100</sup>Ru [1]) is:

 $T_{1/2} = (6.92 \pm 0.16) \times 10^{18} \text{ yr}$ 

In other words, the branching ratio is 99.08(10)% for the  $2v2\beta$  decay of <sup>100</sup>Mo to the ground state, and 0.92(10)% for decay to the first 0<sup>+</sup> 1130.3 keV excited level of <sup>100</sup>Ru



[1] R. Arnold et al., NPA 925 (2014) 25

## An effective nuclear matrix element for $2\nu 2\beta$ decay of $^{100}Mo$

An effective nuclear matrix element for  $2\nu 2\beta$  decay of <sup>100</sup>Mo to the ground state of <sup>100</sup>Ru, assuming the SSD mechanism, by using the phase-space factor  $4134 \times 10^{-21}$  yr<sup>-1</sup> calculated in [1]:

$$M_{2v}^{eff} = 0.1860 \pm 0.002$$

The effective nuclear matrix element can be written as a product  $|M_{2\nu}^{\text{eff}}| = g_A^2 \times M_{2\nu}$ ,

where  $g_A$  is axial vector coupling constant,  $M_{2v}$  is nuclear matrix element, that is almost independent on the  $g_A$  and can be calculated with a reasonable accuracy.

[1] J. Kotila, F. Iachello, Phys. Rev. C 85 (2012) 034316

## Summary and Prospects

 The half-life of <sup>100</sup>Mo relatively to the 2v2β decay to the ground state of <sup>100</sup>Ru is measured with a highest accuracy (≈2.3%) :

$$T_{1/2}^{2\nu 2\beta} = (6.99 \pm 0.16) \times 10^{18} \text{ yr}$$

- The accuracy was achieved with only ≈ 0.12 kg × yr exposure thanks to utilization of enriched detectors with high energy resolution (provided an accurate background reconstruction), negligible internal contamination and low external background, precisely defined detection efficiency (no problem with fiducial volume, etc), high signal/background ratio
- The accuracy can be further improved in the CUPID-Mo with 20 detectors in progress: higher statistics, a more precise background model
- Depleted in <sup>100</sup>Mo Li<sub>2</sub><sup>100depl</sup>MoO<sub>4</sub> crystals (0.007% of <sup>100</sup>Mo) are already produced to investigate the  $2\nu 2\beta$  spectrum shape (mechanism of decay: SSD vs HSD, hypothetical decays, etc.)

### Thanks organizers for invitation and kind support!

15/15

F.A.Danevich Precise measurement of the two neutrino double beta decay of <sup>100</sup>Mo MEDEX 2019, 27-31 May 2019, Prague