

Penning-Trap Mass Spectrometry (PENTATRAP) and Neutrino Mass (ECHo Project)

Sergey Eliseev

Division "Stored and Cooled Ions" (Prof. K. Blaum) Max-Planck-Institute for Nuclear Physics, Germany

MEDEX, Prague, 31 May 2019 Matrix Elements for the **D**ouble beta decay **EX**periments

Determination of neutrino mass with a sub-eV uncertainty

ECHO

current limit: $m_{\overline{\nu}_e} < 2.0 \ eV/c^2$ (95% C.L.)

"Troitsk v-mass" and "Neutrino Mainz" experiments

N. Aseev et al., Phys. Rev. D 84, 112003 (2011).C. Kraus et al., Eur. Phys. J. C 40, 447 (2005).

electron capture (EC) in ¹⁶³Ho

current limit: $m_{\nu_e} < 225 \ eV/c^2$ (95% C.L.)

P. Springer et al., Phys. Rev. A 35, 679 (1987).

MINEBA & MANU

MARE

MES

β⁻-decay of ¹⁸⁷Re

current limit: $m_{\overline{\nu}_e} < 15 \ eV/c^2$ (95% C.L.)

Q-value = 2466.7 (1.6) eV

β^{-} -decay of Tritium

electron capture (EC) in ¹⁶³Ho

independently and precisely (${}^{\delta Q}/{}_m \approx 10^{-11}$) measured Q-values are required

Penning traps are the only tool that can deliver *Q*-values with such precision

AX PLANCK INSTITUTE OR NUCLEAR PHYSICS

β^{-} -decay of Tritium

electron capture (EC) in ¹⁶³Ho

uncertainty which has been achieved until now:

 δQ (tritium decay) \approx 70 meV FSU-trap δQ (EC in ¹⁶³Ho) ≈ 30 eV SHIPTRAP at GSI

required uncertainty in *Q*-value determination:

δQ (tritium decay) ≈ 1 meV FSU-trap ??? δQ (EC in ¹⁶³Ho) ≈ 1 eV PENTATRAP at MPIK

Off-line Penning-trap setups

Off-line Penning-trap setups

Penning trap

(the most accurate mass spectrometer !!!)

strong uniform static B-field

 $V_{\rm C} = \frac{1}{2\pi} \frac{q}{m} B$

- Mass ← Frequency
- Magnetic field of a few Tesla
- Homogeniety of B-field: 10⁻⁷/cm³
- Trapping volume: a few microns³
- High temporal stability of B-field $\int_{Q=M_{p}-M_{d}=M_{d}} \cdot \left(\frac{V_{c_{d}}}{V_{c_{p}}} - 1 \right)$

$$v_c^2 = v_+^2 + v_-^2 + v_z^2$$

Rev. Mod. Phys. 58, 233 (1986).

Location of PENTATRAP

Danma

Bremer

(Denmark)

Szczecin

Gorzów

Max-Planck Institute for Nuclear Physics (Heidelberg)

Division "Stored and Cooled Ions" (Prof. Blaum)

measurements of mass ratios of long-lived and stable nuclides up to uranium with an uncertainty < 10⁻¹¹

Dresden-EBIT ion source

highly charged ions from gaseous & volatile chem. compounds Ar, Xe, Re, Os.....

Tip-EBIT ion source highly charged ions of rare nuclides *Q*-value of EC in ¹⁶³Ho 10¹⁵ Ho atoms available

unique features:

• Stack of five Penning traps:

enable simultaneous measurements

- Stable magnetic field:
 - $\delta B/B < 3 \cdot 10^{-10} h^{-1}$
- Highly charged ions: increased measurement precision and detection signal
- Cryogenic (4.2 K) environment (Penning-traps and electronics)
- Phase sensitive detection methods

Repp, J. et al., Appl. Phys. B 107, 983 (2012) Roux, C. et al., Appl. Phys. B 107, 997 (2012) Sturm, S. et al., Phys. Rev. Lett. 107, 143003 (2011) Böhm C. et al. Nucl. Instrum. Meth. A 828, 12

Böhm, C. et al., Nucl. Instrum. Meth. A 828, 125 (2016)

Measurement of trap frequencies with PENTATRAP

(resonant circuit)

reduction of ion motional amplitudes

(2) frequency-measurement system

Measurement of trap frequencies with PENTATRAP

Commissioning of PENTATRAP in summer 2018

MAXPLANCE CERELLECHAPT

Binding Energy of 18th electron in Xe: M(¹³²Xe¹⁸⁺) – M(¹³²Xe¹⁷⁺)

Available online at www.sciencedirect.com

Atomic Data and Nuclear Data Tables 86 (2004) 117-233

Atomic Data

www.elsevier.com/locate/adt

Systematic calculation of total atomic energies of ground state configurations $\stackrel{\text{\tiny{total}}}{\longrightarrow}$

G.C. Rodrigues,^{a,1} P. Indelicato,^a J.P. Santos,^{b,c,*} P. Patté,^c and F. Parente,^{c,d}

^a Laboratoire Kastler-Brossel, École Normale Supérieure et Université Pierre et Marie Curie, Case 74, 4 place Jussieu, F-75252 Paris Cedex 05, France ^b Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, 2825-114 Caparica, Portugal ^c Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal ^d Departamento Física da Universidade de Lisboa, Portugal

B^{18th_e}(Xe) 432.4(0.5) eV P. Indelicato δ [M(¹³²Xe¹⁸⁺)/M(¹³²Xe¹⁷⁺)] $\approx 4 \cdot 10^{-12}$

432.4(0.5) eV

B^{18th}–^e(Xe)

B^{18th_e}(Xe) 433.0(3.0) eV

PENTATRAP

P. Indelicato

ongoing measurement: *Q*-value of β^- decay of ¹⁸⁷Re *Q*-value = 2466.7 (1.6) eV

Q-value of EC in ¹⁶³Ho with ~ a few eV uncertainty

¹⁶³Ho lives ~ 4500 years

development of an EBIT for a production of highly charged ions of ¹⁶³Ho

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

ongoing measurement: *Q*-value of β^- decay of ¹⁸⁷Re

we measure :
$$R = \frac{\nu_c [1870s^{29+}]}{\nu_c [187Re^{29+}]}$$

we want to determine :

 $Q = M[^{187}\text{Re}] - M[^{187}\text{Os}] = M[^{187}\text{Os}^{29+}] \cdot [R-1] + \Delta B$

Maurits Haverkort Heidelberg University Institute for Theoretical Physics

> Zoltan Harman Max-Planck Institute for Nuclear Physics

Paul Indelicato Directeur de Recherche au CNRS

optimal charge state for Re/Os ions is 29+:

- easy to achieve an uncertainty of 10⁻¹¹ in *R*-measurement
- easy to produce 29+ Re/Os ions with our EBIT
 - "easy" electron configurations: ¹⁸⁷Re²⁹⁺ [Kr]⁴d¹⁰; ¹⁸⁷Os²⁹⁺ [Kr]⁴d¹⁰4f¹

ongoing measurement: Q-value of β^- decay of ¹⁸⁷Re

preliminary results

For Re^{29+} vs. Os^{29+} we measure two ratios with a 50/50 probability:

 $R_1 = 1.00000013886(15)$

 $R_2 = 1.00000015024(12)$

- Os²⁹⁺ vs. Os²⁹⁺ measurements yield always unity.
- Re^{29+} vs. Re^{29+} measurements yield either unity or $1+1.14 \square 10^{-9}$.

Re
$$Os^{30+}$$

metastable state [Kr]⁴d^{9 4}f1E5 $B_{PENTATRAP} = 201(3) \text{ eV}$
 $B_{Haverkort} = 204(?) \text{ eV}$ $B_{PENTATRAP} = 207 (3) \text{ eV}$ E5 $B_{PENTATRAP} = 201(?) \text{ eV}$ $B_{Haverkort} = 209(?) \text{ eV}$ $B_{Indelicato} = 202 (?) \text{ eV}$ $B_{Indelicato} = 207(?) \text{ eV}$ ground state [Kr]⁴d¹⁰ground state [Kr]⁴d¹⁰

ongoing measurement: *Q*-value of β⁻ decay of ¹⁸⁷Re **preliminary results**

We assume that the smaller measured frequency ratio $R_1 = 1.00000013886(15)$ corresponds to the ground state in Re²⁹⁺. We use this ratio to calculate the *Q*-value of the beta-decay of ¹⁸⁷Re.

Maurits Haverkort has calculated the total electron binding energies for the missing 29 electrons in Re²⁹⁺ and Os²⁹⁺:

 $B(Os^{29+}) = 10971.6 \text{ eV}$ $B(Re^{29+}) = 10912.4 \text{ eV}$ $\Delta B = 59.2 \text{ eV} (uncertainty ???)$

 $Q_{PENTATRAP} = 2477.4(2.9+???) \text{ eV}$

 $Q_{AME} = 2466.7(1.6) \text{ eV}$

 $Q_{PENTATRAP} - Q_{AME} = 10.7(3.3+???) \text{ eV}$

already good agreement;

theoreticians are working on the uncertainty of their calculations

Q-value of EC in ¹⁶³Ho with ~ a few eV uncertainty

development of the Tip-EBIT for a production of highly charged ions of ¹⁶³Ho

we have a ¹⁶³Ho sample with 10¹⁵ atoms

 163 Ho lives ~ 4500 years

Tip-EBIT ion source highly charged ions of rare nuclides

Q-value of EC in ¹⁶³Ho

10¹⁵ Ho atoms available

Development of the Tip-EBIT

Mini-EBIT developed in Crespo's group

Christoph Schweiger Charlotte König

compact room temperature permanent magnet, 0.8 T max. electron current = 60 mA

Nd:YAG (532 nm, 7ns, 1 mJ)

 $\overline{\mathsf{Z}}$

FOR

[WAX]

Development of the Tip-EBIT

MAX PLANCE CESELLECHAPT

Q-value of EC in ¹⁶³Ho with ~ a few eV uncertainty

Movement from the test lab to PENTATRAP is scheduled for this summer.

This autumn - first measurements with ¹⁶³Ho

Thank you for your attention !

The PENTATRAP Team

Christoph Schweiger, José R. Crespo López-Urrutia, Menno Door, Sergey Eliseev, Pavel Filianin, Charlotte König, Kathrin Kromer, Marius Müller, Yuri N. Novikov, Alexander Rischka, Rima X. Schüssler, Stefan Ulmer, Sven Sturm and Klaus Blaum

StaRep – Ultra stable voltage source

Aax Planck Institut for Nuclear Physic

¹⁶³Ho wire preparation

MAX PLANCK INSTITUT FOR NUCLEAR PHYSICS

ick Institute lear Physics	Neutrino phy
	Test of <i>E</i> = <i>n</i>
ax Pla dr Nu	Binding ene
P.F.	g-factor

trino physics	¹⁶³ Ho + $e^- \rightarrow {}^{163}$ Dy + $\nu_e + Q_{EC}$
of $E = mc^2$	$E = \frac{hc}{\lambda} = \Delta m ({}^{36}\text{Cl} - {}^{35}\text{Cl} - n)c^2$
ding energies	$E_B(Xe^{17+}) = \Delta m(Xe^{26+} - Xe^{25+})c^2 - m_ec^2$
g-factor	$\Delta m ({}^{48}\text{Ca}{}^{17+} - {}^{40}\text{Ca}{}^{17+})$

Thorium clock

$$E = \Delta m \left(\frac{229m}{Th} - \frac{229}{Th} \right) c^2$$

The PENTATRAP experiment

Sta

Limitations in PTMS:

-Magnetic field fluctuations and of the electrostatic potential

New in PENTATRAP:

- Stack of five Penning traps enable simultar measurements
- -Highly charged ions: Increase measurement precision and detection signal
- -Phase sensitive detection methods
- -Highly sensitive cryogenic detection electronic (FT-ICR)
- –In-house designed ultra-stable voltage source
- -Cryogenic environment (Penning-traps and electronics)

Repp, J. et al., Appl. Phys. B 107, 983 (2012) Roux, C. et al., Appl. Phys. B 107, 997 (2012) Sturm, S. et al., Phys. Rev. Lett. 107, 143003 (2011) Böhm, C. et al., Nucl. Instrum. Meth. A 828, 125 (2016)

I XX I OR]

trap tower

trap electrodes

NbTi toroidal coil

Systematic uncertainties

Effect	Estimate/Measurement			
An ion in an adjacent trap	δR ≪10 ⁻¹¹			
Image charge effect	$\delta R = 0$ (same mass)			
Relativistic shift	$\delta R < 5 \cdot 10^{-12}$			
Shift associated with the resonator	$\delta R \ll 10^{-11}$			
Higher order electric field components C_4/C_6	$\delta R(C_4) = 10^{-12}$			
Magnetic field inhomogeneities B_1/B_2	effect of B_2 : $\delta R \ll 10^{-11}$ effect of B_1 : $\delta R \sim 2 \cdot 10^{-11}$			
Grouping the data/Fit polynomial order	$\delta R = 1.2 \cdot 10^{-11}$			
Preliminary value (E_p) : 433.0 (3.0) eV				

Theory value: 432.4 (0.5) eV

D

The Electron Capture in Holmium experiment

Gastaldo, L. et al., EPJ ST 226, 1623 (2017) Fleischmann, L. et al., J. of Phys.: Conf. S. 150, 012013 (2009)

The Electron Capture in Holmium experiment

ECHo Phase 1 (Proof of Principle): 1kBq

ECHo Phase 2: 100 kBq

$$m_{\nu_e} < 10 \; rac{\mathrm{eV}}{\mathrm{c}^2}$$

 $Q_{\rm EC}$ measurement at SHIPTRAP

ECHo Phase 3: 1MBq

$$m_{\nu_e} \le 1 \frac{\mathrm{eV}}{\mathrm{c}^2}$$

 $Q_{\rm EC}$ measurement at PENTATRAP

Underlying technique – cryogenic microcalorimetry

L. Gastaldo et al., J. Low Temp. Phys. 176 (2014) 876

P.C.-O. Ranitzsch et al., J. Low Temp. Phys. 167 (2012) 1004

Penning traps: masses of nuclides

Field	Examples	δm/m
Nuclear structure physics	shell closures, shell quenching, regions of deformation, drip lines, halos, $S_{n'}$, $S_{p'}$, $S_{2n'}$, $S_{2p'}$, $\delta V_{pn'}$ island of stability	10 ⁻⁶ to 10 ⁻⁷
Astrophysics nuclear models mass formula	<i>rp</i> -process and <i>r</i> -process path, waiting-point nuclei, proton threshold energies, astrophysical reaction rates, neutron star, x-ray burst	
Weak interaction studies	CVC hypothesis, CKM matrix unitarity, <i>Ft</i> of superallowed <i>ß</i> -emitters	10 ⁻⁸
Metrology, fundamental constants	lpha (h/m _{Cs} , m _{Cs} /m _p , m _p /m _e), m _{Si}	10 ⁻⁹ to 10 ⁻¹⁰
Neutrino physics	$m_{mother} - m_{daughter}$: $0v\beta\beta, 0v2EC$ sterile neutrinos neutrino mass	10 ⁻⁸ -10 ⁻⁹ <10 ⁻¹¹
CPT tests QED in HCI	m_p and $m_p^ m_{e}$ and m_{e_+} m_{ion} , electron binding energy	<10 ⁻¹¹

Penning traps: masses of nuclides

Field	Examples	δm/m
Nuclear structure physics	shell closures, shell quenching, regions of deformation, drip lines, halos S_{p} , S_{2n} , S_{2p} , δV_{pn} , island	10 ⁻⁶ to 10 ⁻⁷
Astrophysics nuclear models mass formula	on-line facilities ing-point rophysical	
Weak interaction S studies	superallowed <i>β</i> -emitters	10 ⁻⁸
Metrology, fundamental constants	$\alpha (h/m_{Cs}, m_{Cs}/m_{p}, m_{m}/m^{\prime}) m_{Si}$	10 ⁻⁹ to 10 ⁻¹⁰
	ce line setups DV2EC	10 ⁻⁸ -10 ⁻⁹
Neutrino physics	ott-lived nuclides eutrinos	<10-11
CPT tests	ONG-IIV m_{p} and $m_{e_{+}}$ and $m_{e_{+}}$	
QED in HCI	<i>m</i> _{ion} , electron binding energy	<10-11

achievable accuracy of mass measurements short-lived nuclides : $\delta m/m \sim 10^{-6} - 10^{-8}$ long-lived nuclides : $\delta m/m \sim 10^{-10}$

-PE

AL

SE

Angola

Zambia

Moçambique

(Mozambique)

Brasi

(Brazil)

MT

RO

Bolivia

TO

GO

AC

Perú

(Peru)

strong uniform static **B**-field

 $\mathbf{v_c} = \frac{1}{2\pi} \frac{q}{m} B$

THe-TRAP

Max-Planck Institute for Nuclear Physics, Heidelberg

 $\frac{\Delta B}{B} < 10^{-11} h^{-1}$

Measurement of trap frequencies with PENTATRAP

$$\frac{signal}{noise} = \sqrt{\frac{k^2 4k_B T R + k^4 R^2 i^2}{e^2}}$$

Measurement of trap frequencies with PENTATRAP

equivalent electronic circuit

Measurement scheme at PENTATRAP

Measurement scheme 2 at PENTATRAP

 $R(t_1) = \frac{\nu_1(t_1)}{\nu_2(t_1)} = \frac{m_2}{m_1} \frac{B_2(t_1)}{B_1(t_1)}$

$$R(t_2) = \frac{\nu_1(t_2)}{\nu_2(t_2)} = \frac{m_2}{m_1} \frac{B_1(t_2)}{B_2(t_2)}$$