Nuclear Responses for Double Beta Decay and Muon Capture

Lotta Jokiniemi

Department of Physics, University of Jyväskylä MEDEX'19, Prague 27-31 May, 2019

May 29, 2019

Lotta Jokiniemi (JYFL) IVSD and OMC as probes of $0\nu\beta\beta$

1 Motivation

2 Charge-exchange reactions as a probe

- Charge-exchange reaction introduction
- Results

3 Muon capture as a probe

- Muon capture formalism
- Results

Motivation

 ββ-decays challenging to study both experimentally and theoretically

 → Both charge-exchange reactions and muon capture

offer a detour to study them.

Motivation

- ββ-decays challenging to study both experimentally and theoretically
 - \rightarrow Both charge-exchange reactions and muon capture offer a detour to study them.
- Reliable description of the intermediate states essential for probing the half-lives of $0\nu\beta\beta$ -decay.

- ββ-decays challenging to study both experimentally and theoretically
 - \rightarrow Both charge-exchange reactions and muon capture offer a detour to study them.
- Reliable description of the intermediate states essential for probing the half-lives of $0\nu\beta\beta$ -decay.
- Physics beyond the Standard Model!

• $\beta\beta$ decays take place between two even-even nuclei of the isobaric chain trough the virtual states of the intermediate odd-odd nucleus.

- $\beta\beta$ decays take place between two even-even nuclei of the isobaric chain trough the virtual states of the intermediate odd-odd nucleus.
- $0\nu\beta\beta$ -decay runs trough all possible multipolarities J^{π} of the intermediate nucleus (whereas $2\nu\beta\beta$ runs only trough 1⁺ states).

- $\beta\beta$ decays take place between two even-even nuclei of the isobaric chain trough the virtual states of the intermediate odd-odd nucleus.
- $0\nu\beta\beta$ -decay runs trough all possible multipolarities J^{π} of the intermediate nucleus (whereas $2\nu\beta\beta$ runs only trough 1⁺ states).
- Intermediate J^{π} states of $0\nu\beta\beta$ decay can be studied by utilising the corresponding $\beta^{-}(\beta^{+})$ transitions of the mother(daughter) nucleus.

- $\beta\beta$ decays take place between two even-even nuclei of the isobaric chain trough the virtual states of the intermediate odd-odd nucleus.
- $0\nu\beta\beta$ -decay runs trough all possible multipolarities J^{π} of the intermediate nucleus (whereas $2\nu\beta\beta$ runs only trough 1⁺ states).
- Intermediate J^π states of 0νββ decay can be studied by utilising the corresponding β⁻(β⁺) transitions of the mother(daughter) nucleus.
- The energetics and strength distributions of these reactions were studied using pnQRPA theory with large no-core single-particle bases.

- $\beta\beta$ decays take place between two even-even nuclei of the isobaric chain trough the virtual states of the intermediate odd-odd nucleus.
- $0\nu\beta\beta$ -decay runs trough all possible multipolarities J^{π} of the intermediate nucleus (whereas $2\nu\beta\beta$ runs only trough 1⁺ states).
- Intermediate J^π states of 0νββ decay can be studied by utilising the corresponding β⁻(β⁺) transitions of the mother(daughter) nucleus.
- The energetics and strength distributions of these reactions were studied using pnQRPA theory with large no-core single-particle bases.
- The aim is to probe the particle-hole parameter g_{ph} by fitting it to experimental data.

$0\nu\beta\beta$ Decay and CEX Reactions in the A = 76 Triplet

Results: Fitting the Particle-Hole Parameter to Experiments

 Measurements on isovector spin-dipole J^π = 2⁻ transitions led by Prof. Hiro Ejiri at RCNP, University of Osaka and by Prof. Dieter Frekers at University of Muenster.

Figure 3: Isovector spin-dipole $J^{\pi} = 2^{-}$ spectra for $A = 76^{-1}$.

¹L. Jokiniemi *et al.*, *Phys. Rev. C*, **98**, 024608 (2018).

Lotta Jokiniemi (JYFL)

IVSD and OMC as probes of $0\nu\beta\beta$

Results: Fitting the Particle-Hole Parameter to Experiments

- Measurements on isovector spin-dipole J^π = 2⁻ transitions led by Prof. Hiro Ejiri at RCNP, University of Osaka and by Prof. Dieter Frekers at University of Muenster.
- The particle-hole parameter g_{ph} traditionally fitted to Gamow-Teller giant resonances \rightarrow How about fitting g_{ph} to spin-dipole giant resonances, instead?

Figure 3: Isovector spin-dipole $J^{\pi} = 2^{-}$ spectra for $A = 76^{-1}$.

¹L. Jokiniemi *et al.*, *Phys. Rev. C*, **98**, 024608 (2018). Lotta Jokiniemi (JYFL) IVSD and OMC as probes of $0\nu\beta\beta$ Table 1: Parameters of the pnQRPA calculations for various $0\nu\beta\beta$ decaying nuclei.

Nucleus	$E(SD2^{-})$	E(GT)	$g_{\rm ph}(2^-)$	$g_{\rm ph}({ m GT})$
	(MeV)	(MeV)		
$^{76}\mathrm{Ge}$	18.9 ± 1.0	11.4 ± 0.5	1.2 ± 0.3	1.03 ± 0.13
$^{96}\mathrm{Zr}$	22 ± 1.0	12.7 ± 0.5	0.8 ± 0.2	0.84 ± 0.09
$^{100}\mathrm{Mo}$	19.7 ± 1.0	12.2 ± 0.5	1.0 ± 0.2	1.19 ± 0.08
$^{116}\mathrm{Cd}$	20.5 ± 1.0	13.0 ± 0.5	1.07 ± 0.09	0.85 ± 0.13
$^{128}\mathrm{Te}$	21.3 ± 1.0	13.8 ± 0.5	1.9 ± 0.2	1.40 ± 0.09
$^{130}\mathrm{Te}$	21.7 ± 1.0	14.2 ± 0.5	1.9 ± 0.2	1.36 ± 0.09
$^{136}\mathrm{Xe}$	22.1 ± 1.0	14.6 ± 0.5	0.9 ± 0.2	1.18 ± 0.08

Results: $0\nu\beta\beta$ Matrix Elements Using Spin-Dipole Data

Different models

1
$$g_{\rm ph} = g_{\rm ph}({\rm GT})$$
 for all J^{π} .²

2
$$g_{\rm ph} = g_{\rm ph}({\rm SD2^-})$$
 for $J^{\pi} = 2^-$,
for the rest $g_{\rm ph} = g_{\rm ph}({\rm GT})$.

3
$$g_{\rm ph} = g_{\rm ph}({\rm GT})$$
 for $J^{\pi} = 1^+$, for
the rest $g_{\rm ph} = g_{\rm ph}({\rm SD}2^-)$.

Nuclear transition	Model	$M^{(0\nu)}$
$^{76}\mathrm{Ge} \longrightarrow ^{76}\mathrm{Se}$	1	6.9 ± 0.3
	2	6.8 ± 0.3
	3	6.6 ± 0.4
	$1, \text{small}^2$	6.54
$^{96}\mathrm{Zr} \longrightarrow ^{96}\mathrm{Mo}$	1	5.3 ± 0.2
	2	5.3 ± 0.2
	3	5.5 ± 0.4
	$1, \text{small}^2$	4.47
$^{100}Mo \longrightarrow ^{100}Ru$	1	5.54 ± 0.10
	2	5.55 ± 0.11
	3	5.9 ± 0.4
	$1, \text{small}^2$	4.98
$^{116}Cd \longrightarrow ^{116}Sn$	1	5.7 ± 0.2
	2	5.7 ± 0.2
	3	5.39 ± 0.13
	$1, \text{small}^2$	4.93
$^{128}\mathrm{Te} \longrightarrow ^{128}\mathrm{Xe}$	1	5.52 ± 0.15
	2	5.47 ± 0.15
	3	4.9 ± 0.3
	$1, \text{small}^2$	5.74
$^{130}\mathrm{Te} \longrightarrow ^{130}\mathrm{Xe}$	1	4.77 ± 0.12
	2	4.72 ± 0.12
	3	4.1 ± 0.2
	$1, \text{small}^2$	5.27
$^{136}\text{Xe} \longrightarrow ^{136}\text{Ba}$	1	3.72 ± 0.09
	2	3.76 ± 0.10
	3	4.1 ± 0.3
	$1.\mathrm{small}^2$	3.50

²J. Hyvärinen and J. Suhonen, *Phys. Rev. C*, **91**, 024613 (2015). Lotta Jokiniemi (JYFL) IVSD and OMC as probes of $0\nu\beta\beta$ M

May 29, 2019 8 / 27

Muon Capture as a Probe

Figure 4: Very schematic figure of a muon capture.

OMC

$$\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1)$$

• Weak interaction process with high energy release and large momentum transfer.

OMC

$$\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1)$$

- Weak interaction process with high energy release and large momentum transfer.
- Energy release is about 100 MeV, of which the largest fraction is donated to the neutrino.

OMC

$$\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1)$$

- Weak interaction process with high energy release and large momentum transfer.
- Energy release is about 100 MeV, of which the largest fraction is donated to the neutrino.
- Large mass of the captured muon allows forbidden transitions and high excitation energies of the final state.

Muon Capture Formalism

• OMC rates based on Morita-Fujii formalism ³.

³M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960). ⁴H. Drimala ff, Bay, Mod. Phys. **21**, 802 (1050).

⁴H. Primakoff, Rev. Mod. Phys. **31**, 802 (1959).

Lotta Jokiniemi (JYFL) IVSD and OMC as probes of $0\nu\beta\beta$

Muon Capture Formalism

- $\bullet\,$ OMC rates based on Morita-Fujii formalism $^3.$
- Muonic screening is taken into account by the Primakoff method ⁴.

³M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960).

⁴H. Primakoff, Rev. Mod. Phys. **31**, 802 (1959).

Lotta Jokiniemi (JYFL) IVSD and OMC as probes of $0\nu\beta\beta$

Muon Capture Formalism

- $\bullet\,$ OMC rates based on Morita-Fujii formalism $^3.$
- Muonic screening is taken into account by the Primakoff method ⁴.
- Capture rate to a J^{π} final state can be written as

$$W = 8\left(\frac{Z_{\text{eff}}}{Z}\right)^4 P(\alpha Z m'_{\mu})^3 \frac{2J_f + 1}{2J_i + 1} \left(1 - \frac{q}{m_{\mu} + AM}\right) q^2 , \quad (1)$$

where

- A is the mass number of the nuclei,
- $Z(Z_{\text{eff}})$ the (effective) atomic number of the initial nucleus,
- $J_i(J_f)$ the angular momentum of the initial (final) nucleus,
- M the average nucleon mass,
- m_{μ} the bound muon mass,
- α the fine-structure constant, and
- q the Q value of the OMC.

³M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960).

⁴H. Primakoff, Rev. Mod. Phys. **31**, 802 (1959).

Lotta Jokiniemi (JYFL) IVS

May 29, 2019 11 / 27

• The Q value of the OMC can be written as

$$q = (m_{\mu} - W_0) \left(1 - \frac{m_{\mu} - W_0}{2(M_f + m_{\mu})} \right) \, .$$

where $W_0 = M_f - M_i + m_e + E_X$, and

- $M_f(M_i)$ is the mass of the final(initial) nucleus,
- m_e the electron mass, and
- E_X the excitation energy of the final state.

2

OMC Formalism: P Term

• The term P in Eq. (1) can be written as

$$\begin{split} P &= \frac{1}{2} \sum_{\kappa u} \left| g_{\rm V}[0\,l\,u] S_{0u}(\kappa) \delta_{lu} + g_{\rm A}[1\,l\,u] S_{1u}(\kappa) - \frac{g_{\rm V}}{M} [1\,\bar{l}\,u\,p] S_{1u}'(-\kappa) \right. \\ &+ \sqrt{3} \frac{g_{\rm V}q}{2M} \left(\sqrt{\frac{\bar{l}+1}{2\bar{l}+3}} [0\,\bar{l}+1\,u+] \delta_{\bar{l}+1,u} + \sqrt{\frac{\bar{l}}{2\bar{l}-1}} [0\,\bar{l}-1\,u-] \delta_{\bar{l}-1,u} \right) S_{1u}'(-\kappa) \\ &+ \sqrt{\frac{3}{2}} \left(\frac{g_{\rm V}q}{M} \right) (1+\mu_p-\mu_n) \left(\sqrt{\bar{l}+1}W(1\,1\,u\,\bar{l}\,;1\,\bar{l}+1)[1\,\bar{l}+1\,u+] \right. \\ &+ \sqrt{\bar{l}}W(1\,1\,u\,\bar{l}\,;1\,\bar{l}-1)[1\,\bar{l}-1\,u-] \right) S_{1u}'(-\kappa) \\ &- \left(\frac{g_{\rm A}}{M} \right) [0\,\bar{l}\,u\,p] S_{0u}'(-\kappa) \delta_{\bar{l}u} + \sqrt{\frac{1}{3}} (g_{\rm P}-g_{\rm A}) \left(\frac{q}{2M} \right) \\ &\times \left(\sqrt{\frac{\bar{l}+1}{2\bar{l}+1}} [1\,\bar{l}+1\,u+] + \sqrt{\frac{\bar{l}}{2\bar{l}+1}} [1\,\bar{l}-1\,u-] \right) \\ &\times S_{0u}'(-\kappa) \delta_{\bar{l}u} \right|^2 \,, \end{split}$$

where we abbreviate $[k w u {\pm p}] \coloneqq \mathcal{M}[k w u {\pm p}]$.

Lotta Jokiniemi (JYFL)

• The term P can be expanded in terms of a small quantity $1/M^2$ as $P = P_0 + P_1$, where

- The term P can be expanded in terms of a small quantity $1/M^2$ as $P = P_0 + P_1$, where
 - P_0 is obtained by neglecting terms containing $1/M^2$, and

- The term P can be expanded in terms of a small quantity $1/M^2$ as $P = P_0 + P_1$, where
 - P_0 is obtained by neglecting terms containing $1/M^2$, and
 - P_1 includes all terms of the order $1/M^2$.

- The term P can be expanded in terms of a small quantity $1/M^2$ as $P = P_0 + P_1$, where
 - P_0 is obtained by neglecting terms containing $1/M^2$, and
 - P_1 includes all terms of the order $1/M^2$.
- Original Morita-Fujii formalism included only the leading-order P_0 term

- The term P can be expanded in terms of a small quantity $1/M^2$ as $P = P_0 + P_1$, where
 - P_0 is obtained by neglecting terms containing $1/M^2$, and
 - P_1 includes all terms of the order $1/M^2$.
- Original Morita-Fujii formalism included only the leading-order P_0 term
 - This can lead to unphysical results for some weak transitions to high-lying states

- The term P can be expanded in terms of a small quantity $1/M^2$ as $P = P_0 + P_1$, where
 - P_0 is obtained by neglecting terms containing $1/M^2$, and
 - P_1 includes all terms of the order $1/M^2$.
- Original Morita-Fujii formalism included only the leading-order P_0 term
 - This can lead to unphysical results for some weak transitions to high-lying states
- We extended the formalism by adding the P_1 term in the calculations.

OMC Formalism: P_0 Term for *n*th Forbidden Transition:

$$\begin{split} P_{0} = g_{V}^{2} [0 n n]^{2} + \frac{1}{3} g_{A}^{2} \left([1 n n]^{2} + [1 n n + 1]^{2} + [1 n + 2 n + 1]^{2} \right) + \frac{1}{2n + 1} g_{V}^{2} \frac{q}{M} [0 n n] \left(n [0 n n +] \right) \\ + (n + 1) [0 n n -] \right) + \sqrt{\frac{n(n + 1)}{3}} \frac{1}{2n + 1} g_{V}^{2} \frac{q}{M} (1 + \mu_{p} - \mu_{n}) [0 n n] \left(- [1 n n -] + [1 n n +] \right) \\ - \sqrt{\frac{n(n + 1)}{3}} \frac{1}{2n + 1} g_{A} g_{V} \frac{q}{M} [1 n n] \left([0 n n -] - [0 n n +] \right) \\ + \frac{1}{3} g_{A} g_{V} \frac{q}{M} (1 + \mu_{p} - \mu_{n}) \left\{ \frac{1}{2n + 1} [1 n n] \left(n [1 n n -] + (n + 1) [1 n n +] \right) \\ + \frac{1}{2n + 3} \left(\sqrt{n + 2} [1 n n + 1] - \sqrt{n + 1} [1 n + 2 n + 1] \right) \left(\sqrt{n + 2} [1 n n + 1 -] - \sqrt{n + 1} [1 n + 2 n + 1] \right) \right\} \\ + \frac{1}{3(2n + 3)} g_{A} (g_{A} - g_{P}) \frac{q}{M} \left(\sqrt{n + 1} [1 n n + 1] + \sqrt{n + 2} [1 n + 2 n + 1] \right) \left(\sqrt{n + 1} [1 n n + 1 -] \\ + \sqrt{n + 2} [1 n + 2 n + 1 +] \right) - \frac{2}{\sqrt{3(2n + 1)}} g_{V}^{2} \frac{1}{M} [0 n n] \left(\sqrt{n} [1 n - 1 n p] + \sqrt{n + 1} [1 n + 1 n p] \right) \\ - \frac{2}{3} g_{A} g_{V} \frac{1}{M} \left\{ \frac{1}{\sqrt{2n + 3}} \left(-\sqrt{n + 2} [1 n n + 1] + \sqrt{n + 1} [1 n + 2 n + 1] \right) [1 n + 1 n + 1 p] \right. \\ + \frac{1}{\sqrt{2(n + 1)}} [1 n n] \left(\sqrt{n + 1} [1 n - 1 n p] - \sqrt{n} [1 n + 1 n p] \right) \right\} \\ + \frac{2}{\sqrt{3(2n + 3)}} g_{A}^{2} \frac{1}{M} \left(\sqrt{n + 1} [1 n n + 1] + \sqrt{n + 2} [1 n + 2 n + 1] \right) [0 n + 1 n + 1 p] \\ + \frac{1}{12(2n + 3)} \left(\frac{g_{P} q}{M} \right)^{2} \left(\sqrt{n + 1} [1 n n + 1] -] + \sqrt{n + 2} [1 n + 2 n + 1] \right) \right] \end{aligned}$$

May 29, 2019

15/27

Lotta Jokiniemi (JYFL) IVSD and OMC as probes of $0\nu\beta\beta$

OMC Formalism: Added P_1 Term:

$$\begin{split} P_{1} &= \left(\frac{g_{A}}{M}\right)^{2} [0 \ n+1 \ n+1]^{2} + g_{V}^{2} \left(\frac{q}{2M}\right)^{2} \frac{1}{2n+1} \left(n[0 \ n \ n+]^{2} + (n+1)[0 \ n \ n-]^{2}\right) \\ &+ \frac{1}{3} \left(\frac{g_{V}}{M}\right)^{2} \left([1 \ n-1 \ n \ p]^{2} + [1 \ n+1 \ n \ p]^{2} + [1 \ n+1 \ n+1 \ p]^{2}\right) \\ &+ \frac{1}{12} (g_{A}^{2} - 2g_{A}g_{P}) \left(\frac{q}{M}\right)^{2} \frac{1}{2n+3} \left(\sqrt{n+2}[1 \ n+2 \ n+1+] + \sqrt{n+1}[1 \ n+1 \ -1]\right)^{2} \\ &+ \frac{1}{12} \left(\frac{g_{V}q}{2M}\right)^{2} (1 + \mu_{p} - \mu_{n}) \left\{\frac{1}{2n+1} \left((n+1)[1 \ n+1]^{2} + n[1 \ n-1]^{2}\right) \\ &+ \frac{1}{2n+3} \left(\sqrt{n+1}[1 \ n+2 \ n+1+] - \sqrt{n+2}[1 \ n+1 \ -1]\right)^{2} \right\} \\ &- \frac{1}{\sqrt{3}(2n+1)} \left(\frac{g_{V}}{M}\right)^{2} q \left(\sqrt{n}[1 \ n-1 \ n \ p][0 \ n+] + \sqrt{n+1}[1 \ n+1 \ n \ p][0 \ n-1]\right) \\ &+ \frac{1}{3} \left(\frac{g_{V}}{M}\right)^{2} q (1 + \mu_{p} - \mu_{n}) \left\{\frac{1}{\sqrt{2n+1}} \left(\sqrt{n}[1 \ n+1 \ n \ p][1 \ n-1 \ -1] - \sqrt{n+1}[1 \ n+1 \ n \ p][1 \ n-1 \ n \ p][1 \ n+1]\right) \right\} \\ &+ \frac{1}{2\sqrt{3}} \left(\frac{g_{V}q}{M}\right)^{2} (1 + \mu_{p} - \mu_{n}) \frac{\sqrt{n(n+1)}}{2n+1} \left([0 \ n \ n+][1 \ n+1 \ n+1 \ p][1 \ n+2 \ n+1+]\right) \right\} \\ &+ \frac{1}{\sqrt{3}} g_{A}(g_{A} - g_{P}) \frac{q}{M^{2}} \frac{1}{\sqrt{2n+3}} [0 \ n+1 \ n+1 \ p] \left(\sqrt{n+2}[1 \ n+2 \ n+1+] + \sqrt{n+1}[1 \ n+1 \ n+1]\right) \right] \end{split}$$

1 Muon capture rate distribution on ¹⁰⁰Mo computed with pnQRPA, and compared with experimental data.

- 1 Muon capture rate distribution on ¹⁰⁰Mo computed with pnQRPA, and compared with experimental data.
- 2 Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets, ⁷⁶Se, ⁸²Kr, ⁹⁶Mo, ¹⁰⁰Ru, ¹¹⁶Sn, ¹²⁸Xe, ¹³⁰Xe, and ¹³⁶Ba, computed with pnQRPA.

- 1 Muon capture rate distribution on ¹⁰⁰Mo computed with pnQRPA, and compared with experimental data.
- 2 Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets, ⁷⁶Se, ⁸²Kr, ⁹⁶Mo, ¹⁰⁰Ru, ¹¹⁶Sn, ¹²⁸Xe, ¹³⁰Xe, and ¹³⁶Ba, computed with pnQRPA.
- 3 OMC rates compared with $0\nu\beta\beta$ matrix elements.

• For the first time, OMC giant resonance was observed in 100 Nb 5 .

⁵I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018).

Lotta Jokiniemi (JYFL) IVSD and OMC as probes of $0\nu\beta\beta$

- For the first time, OMC giant resonance was observed in 100 Nb 5 .
- OMC rate distribution to the excited states of ¹⁰⁰Nb computed and compared with the experimental strength distribution.

⁵I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018).

- For the first time, OMC giant resonance was observed in 100 Nb 5 .
- OMC rate distribution to the excited states of ¹⁰⁰Nb computed and compared with the experimental strength distribution.
- Involved nuclear wave functions computed with pnQRPA with large no-core single-particle bases.

⁵I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018).

- For the first time, OMC giant resonance was observed in 100 Nb 5 .
- OMC rate distribution to the excited states of ¹⁰⁰Nb computed and compared with the experimental strength distribution.
- Involved nuclear wave functions computed with pnQRPA with large no-core single-particle bases.
- Obtained giant resonance compared with the experimental one \rightarrow Both distributions show giant resonance at around 12 MeV!

⁵I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018).

Figure 5: Theoretical muon capture rate distribution to 100 Nb.

Figure 6: Experimental muon capture strength distribution to 100 Nb.⁶

⁶I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018). Lotta Jokiniemi (JYFL) IVSD and OMC as probes of $0\nu\beta\beta$

May 29, 2019 19/27

• Primakoff estimate for the total muon capture rate

$$W_{\rm Pr.}(A,Z) = Z_{\rm eff}^4 X_1 \left[1 - X_2 \left(\frac{A-Z}{2A} \right) \right] ,$$
 (6)

where $X_1 = 170 \text{ 1/s}$ and $X_2 = 3.125$, gives $W_{\text{Pr.}}(^{100}\text{Mo}) = 7.7 \times 10^6 \text{ 1/s}.$

• Primakoff estimate for the total muon capture rate

$$W_{\rm Pr.}(A,Z) = Z_{\rm eff}^4 X_1 \left[1 - X_2 \left(\frac{A-Z}{2A} \right) \right] ,$$
 (6)

where $X_1 = 170 \text{ 1/s}$ and $X_2 = 3.125$, gives $W_{\text{Pr.}}(^{100}\text{Mo}) = 7.7 \times 10^6 \text{ 1/s}.$

• Total OMC rate value obtained from pnQRPA calculations (with $g_{\rm A} = 0.8$ and $g_{\rm P} = 10$) was $W_{\rm tot} = 17.7 \times 10^6 \ 1/{\rm s}$ \rightarrow This suggests for quenched $g_{\rm A} \approx 0.5$!

• OMC rates to the intermediate nuclei of neutrinoless double beta $(0\nu\beta\beta)$ decays of current experimental interest are computed in the pnQRPA framework.

⁷D. Zinatulina *et al.*, Phys. Rev. C **99**, 024327 (2019).

- OMC rates to the intermediate nuclei of neutrinoless double beta $(0\nu\beta\beta)$ decays of current experimental interest are computed in the pnQRPA framework.
- The corresponding OMC (capture-rate) strength functions have been analyzed in terms of multipole decompositions.

⁷D. Zinatulina *et al.*, Phys. Rev. C **99**, 024327 (2019).

- OMC rates to the intermediate nuclei of neutrinoless double beta $(0\nu\beta\beta)$ decays of current experimental interest are computed in the pnQRPA framework.
- The corresponding OMC (capture-rate) strength functions have been analyzed in terms of multipole decompositions.
- The computed low-energy OMC-rate distribution to 76 As is compared with the available data of Zinatulina *et al.*⁷

⁷D. Zinatulina *et al.*, Phys. Rev. C **99**, 024327 (2019).

Table 2: The "most probable" experimental OMC strength distribution below 1.1 MeV in ⁷⁶As⁸ compared with the corresponding pnQRPA-computed distribution. 'g.s.' means transitions to the ground state that could not be measured.

	OMC rate	(1/s)
J^{π}	$\operatorname{Exp.}$	`pnQRPA
0^{+}	5120	414
1^{+}	218 240	$236\ 595$
1^{-}	31 360	28 991
2^{+}	120 960	114 016
2^{-}	145 920 + g.s.	177 802
3^{+}	$60\ 160$	55 355
3-	53 120	34 836
4^{+}	-	2797
4-	30 080	23 897

⁸D. Zinatulina *et al.*, Phys. Rev. C **99**, 024327 (2019).

Lotta Jokiniemi (JYFL)

IVSD and OMC as probes of $0\nu\beta\beta$

Results 3/3: OMC vs. $0\nu\beta\beta$ in ⁷⁶As

Figure 9: $0\nu\beta\beta$ matrix elements vs. OMC rates to the daughter nucleus of $0\nu\beta\beta$ decay in the A=76 system. J^{π} refers to the angular momentum of the virtual states of the intermediate nucleus of $0\nu\beta\beta$ decay.

To Be Continued: Muon Capture Rates to the Lowest States of Shell Model Nuclei $^{24}\mathrm{Na},\,^{32}\mathrm{P},\,\mathrm{and}\,\,^{56}\mathrm{Mn}$

Figure 10: Muon capture rates to the lowest states of ³²P computed with two different interactions.

 \rightarrow Experiment under planning. $\rightarrow g_A, g_P$?

• $0\nu\beta\beta$ decay calculations are challenging, and need some complementary tests.

- $0\nu\beta\beta$ decay calculations are challenging, and need some complementary tests.
- Charge-exchange reactions and nuclear muon capture serve as a useful way to study $0\nu\beta\beta$ decay.

- 0νββ decay calculations are challenging, and need some complementary tests.
- Charge-exchange reactions and nuclear muon capture serve as a useful way to study $0\nu\beta\beta$ decay.
- So far, the theoretical muon capture giant resonances and low-energy OMC rates seem to match the experimental ones.

- $0\nu\beta\beta$ decay calculations are challenging, and need some complementary tests.
- Charge-exchange reactions and nuclear muon capture serve as a useful way to study $0\nu\beta\beta$ decay.
- So far, the theoretical muon capture giant resonances and low-energy OMC rates seem to match the experimental ones.
- Comparing the total capture rates with Primakoff estimates suggests for strongly quenched g_A value.

- $0\nu\beta\beta$ decay calculations are challenging, and need some complementary tests.
- Charge-exchange reactions and nuclear muon capture serve as a useful way to study $0\nu\beta\beta$ decay.
- So far, the theoretical muon capture giant resonances and low-energy OMC rates seem to match the experimental ones.
- Comparing the total capture rates with Primakoff estimates suggests for strongly quenched g_A value.
- We still need more data to be able to fit the parameters g_A and g_P using muon capture results.

Thank you for your attention!