

UTM-RCNP-JINR Joint collaboration

Muon capture in ¹⁰⁰Mo/^{nat}Mo and ¹⁰⁰Ru at MUSIC (RCNP, Osaka)

Spokespersons: Izyan Hazwani Hashim (UTM), Hiroyasu Ejiri (RCNP) and <u>Daniya Zinatulina (JINR)</u>

(On behalf of collaboration)

MEDEX'19

RCNP and E489 experiment

BEAM LINE:

MuSIC

BEAM REQUIREMENTS:

Type of particle	proton
Beam energy	400 MeV
Beam intensity	1 µA

Type of particle Muon momentum Beam intensity muon 50 MeV/c 1 μA

Neutrino Nuclear Response

- Neutrino nuclear response is the square of NME of DBD.
 - Effective v mass can be extracted from the DBD rate and DBD NME.
 - Understanding the nuclear structure information is important to reveal the quenching effect in M_{0v}.
 - The strength functions B(μ,E) are very sensitive to nucleonic and nonnucleonic correlations.

Experimental data on single beta and muon rates are important to help calculations of DBD NMEs. ³

Overview of the method

4

PRC 97(2018) 014617 (J-PARC 2014)

FIG. 6. The OMC strength distribution suggested from the experimental RI distribution. E_{G1} and E_{G2} are the OMC GRs at around 12 MeV and 30 MeV.

5

91

Atomic Mass Number, A

90

Ordinary Muon Capture (OMC)

 $(A, Z) + \mu^{-} \rightarrow (A, Z-1)^{*} + \nu_{\mu}$ $\rightarrow (A, Z-1) + \gamma + (0n, 1n, 2n, n+p, 3n...)$

PAUL SCHERRER INSTITUT

JOINT INSTITUTE

NUCLEAR RESEARCH

- Set-up adapted to solid and gaseous targets
- (E,t) distribution following OMC in targets
- Yields of short-lived RI during exposure

PhD thesis of D.Zinatulina (June,2019)

PRC 99 (2019) **024327**

E489 experiment (February 2018 y)

E489 collaboration:

I.H. Hashim ¹, D. Zinatulina³,
H. Ejiri², A.Sato², M. Shirchenko³, S.A.Hamzah¹,
F.Othman², K.Ninomiya², T.Shima², K. Takahisa²,
D.Tomono², Y.Kawashima² and V. Egorov³

¹Universiti Teknologi Malaysia, Malaysia ²Research Center for Nuclear Problems, Osaka University, Osaka, Japan ³Joint Institute for Nuclear Research, Russia, Dubna

Long-term preparations and tricks for the muon beam-time

First Joint Program

- Officially established in September 2018.
- E489 Beamtime at Osaka University (Feb 2018).

3 trigger counters with (S1•S2×S3)logic To observe muon stopping event

HPGe

To measure x-ray and gamma ray

¹⁰⁰ Mo (thin	Natural
films)	Ruthenium
Natural	Natural
Molybdenum	Selenium

Preliminary results of the on-line E489 measurement

The analyses are under progress

Time distribution of µ-decay electrones

Present absolute lifetime measurement

lsotope, A	Present work	Previous experimental work	Calculation [Primakoff 1959]
¹⁰⁰ Mo	151.7(24) ns	N/A	130 ns
^{Nat} Mo	99.3(61) ns	105 ns [Suzuki 1987]	114 ns
^{Nat} Ru	132.7(49) ns	N/A	109 ns
^{Nat} Se	211.1(16) ns	208.2(68) ns [PRC99(2019)024327]	239 ns

• Comparison of present mean life, previous experimental work (Suzuki & Zinatulina) life time, and Primakoff mean life.

Muon Irradiation @ J-PARC Experiment

(a) Online setup for theγ rays with half-lived 0to 1.5 hours.

(b) Off-line setup forthe delayed γ rays withhalf-lived 0.5 hoursonwards.

- I. H. Hashim PhD Thesis Osaka 2015I. I. H. Hashim H. Ejiri , 2015. MXG16,
- I. H. Hashim H. Ejiri, et al PR C 97 2018

<u>RI distribution by prompt and delayed</u> <u>γ-rays (under progress)</u>

- To determine the partial capture rates from prompt gamma.
- To evaluate GR peaks from proton and neutron emission model by comparison of short lived and long-lived RI gamma rays.

Se76 Run2 ch0

Summary:

- Experimental studies of OMCs absolute lifetime on some 0vββ nuclei have been done at RCNP 2018 and the analysis is still on going.
- Neutron emission from OMC on enriched nuclei gives almost 90-95% RI production rate;
- All information of OMC is very useful for the β^+ side of DBD NME's and astro-antineutrino investigations.

Approved beam-time for next solid targets ¹³⁶Ba/^{nat}Ba и ⁷⁶Se/ ^{nat}Se (1 week, RCNP, 2020 y).

➢Gas targets ¹³⁰Xe and ⁸²Kr will be investigated with µX group at PSI (Villigen, Switzerland, October 2019)

Thank you for your attention!

BACK SLIDES

in current PNEM.

[1] H.Ejiri, I.H. Hashim. Private Comm. 2018[2] I.H. Hashim. F.Soberi, F.Ibrahim. Private Comm. 2019

Poptop Det (Runat)

Fukushima Det (RuNat)

target	enr-ment	composition	element	thickness
			mass	$\rm mg/cm^2$
82 Kr	99.9%	Kr gas	1.0 l (1 atm.)	37.3
$^{\rm nat}{\rm Kr}$	-	Kr gas	1.0 l (1 atm.)	37.3
$^{130}\mathrm{Xe}$	99.9%	Xe gas	1.0 l (1 atm.)	37.3
$^{\mathrm{nat}}\mathrm{Xe}$	-	Xe gas	1.0 l (1 atm.)	37.3
^{24}Mg	99.89%	MgO powder	1.0 g	250

[1] D. Zinatulina et al. Phys. Rev. C 99 (2019) 024327.

 $\underline{OM3} (\mathbf{On}): \mu^- + (A, Z) \rightarrow (A, Z-1)^* + \nu_{\mu} \rightarrow (A, Z-1) + \gamma, m_{\mu} \sim 100 \text{ MeV}$

2β-распад	2β-эксперименты	Мишени ОМЗ	Статус
⁷⁶ Ge	GerdaI/II, Majorana Demonstrator	⁷⁶ Se	2004 (PSI)
⁴⁸ Ca	TGV, NEMO3, Candles III	⁴⁸ Ti	2002 (PSI)
¹⁰⁶ Cd	TGV	¹⁰⁶ Cd	2004 (PSI)
⁸² Se	NEMO3, SuperNEMO, Lucifer(R&D)	⁸² Kr	2006 (PSI)
¹⁰⁰ Mo	NEMO3, AMoRE(R&D), LUMINEU(R&D)	¹⁰⁰ Ru	2018 (RCNP)
¹¹⁶ Cd	NEMO3, Cobra	¹¹⁶ Sn	2002
¹⁵⁰ Nd	SuperNEMO, DCBA(R&D)	¹⁵⁰ Sm	2002, 2006
¹³⁶ Xe	EXO200, Kamland-Zen, NEXT	¹³⁶ Ba	2019 (RCNP)
¹³⁰ Te	Cuore 0/Cuore, SNO+	¹³⁰ Xe	2019 (PSI)?

Экспериментальная установка (PSI)

Количество μ -stop = (8 – 25) x 10³ c 20 – 30 MeB/c

<u>Метод временной эволюции ү-линии</u>

Полные скорости m-захвата в ⁴⁸Ti

